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ABSTRACT

Distributed decision problems arise whenever two or more

sensors and their associated computers must work coopera-

tively to make a decision about a commonly observed event.

Typical examples are in target detection and classification.

The problem is usually characterized by a limited bandwidth

of the communication link between the sensors.

This thesis develops and evaluates an algorithm for

distributed decision and compares it to a non-distributed or

centralized form of the algorithm. Analysis of the algo-

rithm is carried out for some low-dimensional cases.

Computer simulations were carried out for higher dimensional

cases. The simulation work was done in Fortran under CMS on

an IBM 370/3033 computer.
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I. INTRODUCTION

A. GENERAL DISCUSSION

This thesis presents an algorithm for distributed

decision and compares its performance to that of a

centralized decision rule. A distributed decision rule is

characterized by the fact that a decision algorithm is

distributed between processors of two or more sensors.

For simulation and evaluation, some programs were

written in Fortran on an IBM 770/3033 computer. The work of

this thesis is concerned with the analysis of the

distributed decision rule only. A related thesis by Capt

.

Mark Schon [Ref. 1] is concerned with the implementation in

real time on a distributed microcomputer system.

The specific goals of this thesis are to :

1 Develop and analyze a specific distributed decision
algorithm.

2 Generate all necessary data, parameters and statistics
to simulate the decision algorithms.

3 Experimentally evaluate the capabilities and
performance of a distributed decision rule and compare
it with a centralized decision rule.

B

.

BACKGROUND

In this thesis statistical methods are used to develop

decision algorithms. Since we deal with many observations

which represent data collected by the sensors, vector

notation and matrix algebra is used extensively in these

algorithms

.

The Gaussian distribution is used to characterize the

observations because this provides a decision rule that is

relatively easy to analyze and develop intuition. It also

provides a reasonable decision rule based on second moment

statistics (mean and covariance) of the observation data.
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Bayes ' s rule is used to develop decision algorithms for

binary decision (class 1 or class 2) and to develop the

decision boundary concept. Mathematical manipulation of

Bayes ' s rule leads to specific decision algorithms which are

analyzed and evaluated in the computer simulation.

Since it is very difficult to visualize decision

boundaries in high dimensional spaces, we have developed

some computer programs to experimentally evaluate the

algorithms. The simulations show that in many cases the

distributed decision algorithms are quite reliable and

perform nearly as well as a centralized decision algorithm.

C. STRUCTURE OF THE THESIS

The remainder of this thesis is structured as follows.

Chapter II addresses the overall processes of the decision

rule including probability laws for random vectors and Bayes

decision theory. The matrix algebra needed to describe this

is also developed. Decision rules are interpreted as

providing boundaries and regions in a multidimensional space

that determine decisions made about the observed data.

Chapter III describes a distributed decision algorithm

and the form of its decision boundary. Detailed analysis

and evaluation are given comparing it with the centralized

decision rule.

Chapter IV presents computer simulations to test the

distributed decision rules. To simulate data collected by

sensors, an autoregressive time series model is introduced.

Second moment statistics i.e. the mean, variance and

covariance of the given random vectors are computed by a

statistical estimation algorithm. These statistics are

further used to compute the algorithm parameters. Decision

algorithms are tested with the generated data and results

are given.

Chapter V summarizes the results of the thesis and

describes the capabilities and performance of the decision

algorithms. Suggestions are also given for future research.

10
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II. BASIC DECISION PROCESSES

A. CLASS DECISION

Class decision means a classification of objects into

categories. The objects of interest may be radar targets,

electronic waveforms or signals, printed letters or

characters, states of a system, or any number of other

things that are desired to be classified.

Derive a

Classificat ion

Algorithm

I

r
i

Classificat ion

Algorit hrn

Modify

Algorithm

Results of

Classification

4

Figure 2.1 Basic Class Decision Procedure

In testing a class decision algorithm the individual

classes of objects are presumed already known. The basic

procedure for a class decision is illustrated in Fig. 2.1.

A portion of a known set of labeled objects is extracted and

11
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used to derive a classification algorithm. These objects

comprise the "training set".

Xj*)

XzA

±(sec)

io

m
r

1.0

0.8

x(32). 0.3

(b)

Xi

Figure 2.2 (a) A Waveform to be Recognized

(b) Observation Vector

(c) Depiction of Observation Space

The remaining objects are then used to test the

classification algorithm and these are collectively referred

to as the "test set". The performance of the algorithm can

be evaluated because the correct classes of the individual

12
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objects in the test set are known. The result of

classification is supervised by a teacher who may dictate

suitable modifications to the algorithm.

A simple example of a class decision is presented to

illustrate its approach and to define some relevant

concepts. Fig. 2.2(a) illustrates 32-dimensional

observations of electronic waveforms. The vector x Q is

called the observation vector and the multidimensional space

in which it resides is called the observation space. These

are depicted in Fig. 2.2(b) and (c).

Every problem in class decision has at least two things

in common. First, an exact description of the various

classes of objects cannot be obtained. Thus the class

decision is inherently a probabilistic topic. Secondly, the

objects are represented by vectors in a multidimensional

space. Thus the observation vectors of the objects to be

classified are multidimensional random vectors which must be

described in a statistical sense. Similarly, the

performance of the algorithm must also be measured in a

statistical sense. Thus an adequate background in

probability and statistics is important for these problems.

B. THE GAUSSIAN DISTRIBUTION FOR RANDOM VECTORS

In engineering and many other areas, the Gaussian

distribution is frequently encountered. It describes

certain phenomena well with just two parameters, namely the

mean and the covariance of the random variables. The

Gaussian density function for one-dimensional random

variables is:

P, ( * )
- 1

exp
(* - TO.

(2.1)

13
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Fig. 2.3 shows a one-dimensional density function px (x) with

its mean value mx and variance ox •

Figure 2.3 One Dimensional Gaussian Density Function

In the two-dimensional case (i.e. two random variables)

the Gaussian density function is:

Pi.vi x ^y )
=

27ra
x a v Vl-p 2

exp

x v
y

( x - rn
x )

:

2(1- P
2

)

+ 2p
( x - m

x )( y - m ) ( y - m )'

+
a z° 9

(2.2)

14
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Fig. 2.4 shows a two-dimensional density function p„ „(x,y)

t

P

with its mean values mv and m„ , its variances
* y

? ?
o v and o.x ^y

and the correlation coefficient o of both random variables

x and y [Ref. 2 158] .

P (x.y)

trix

/
/

X
m^ / yf y

-f

^r—.—i

—-*

/ A

ux
—>-

//

Figure 2.4 Two-Dimensional Gaussian Density Function

The Gaussian density function for two sets of

multidimensional random variables x and y is expressed by

the combined vector z and its parameters as follows:

pA±) = i

'1 1
2

exp

(2*) ' |K|

7<± - m j^K-^- m) (2.3)

15
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where

i-Iti.H 1"- m (0

ny
, K(') = *^i zy

B( t
)
r K( |

)

i-l,2 (2.4)

Observation vectors x and y are N and M-dimensional

respectively. The mean vectors m and nt^ are also N and M

dimensional, and they represent the expectations of vectors

i.e. m = E[(x)] and m^ = E[(y_)]. The covariance matrices

[K„] and [K„] are of size [N X N] and [M x M] respectively
x. y

and represent correlations among the components of x and y.

The matrix [Bv-.] is of size [N x M] and represents cross

correlation between the components of the vectors x and y.

These matrices are also defined by expectations of vectors

i.e. Kx = E[(x-mx )(x-mx )
T

] , K
y

= E[ (j-niy ) (v-niy )
T

] , and

Bxy = E[(x-mx )( i
r-m

y )
T

] .

C. BAYES'S THEOREM

Bayes's theorem is used to convert prior probabilities

into posterior probabilities. The form of this theorem that

is useful to us is:

p r
{u\x_) = p(jl\ w )pA " )

P(±)
(2.5)

where co represents an event such as "object belongs to

class 1". The term p r (o>) is called the prior probability

of the event and the term P r (co|x) is called the posterior

probability. More generally, let coi , C0o> > con be

n mutually exclusive classes exhausting the set of all

16
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possible classes of the objects. Then the conditional

probability law gives this following equation:

pr
{u

t
\x) =

, »=1,2, . . . ,n (2.6)—
PIJL )

n
where p(x) =5£ p(x

| a); )P,-(co,- ) . If we consider the case
aJ*) - A t 1

where observations consist of two vectors x and _y_ and assume

that there are only two classes, class 1(cot) and class

2(a>2)> the above equation becomes:

Pr(<",l_*t£.
=-=*LLj

; ; i
'=1,2 (2.7)

If we make a class decision based on the posterior

probabilities, that is

Pr (
u

i I JLdL )< Pr ( ^2 i JLJL ) (2.8)<
u/ 2

then Eqs . 2.7 and 2.8 lead to the likelihood ratio test

' *.i£)
= —f r< —i—

r

=r 2.9)
P2lJLlM. ) Pr ( -^1 )

where we have used the notation Pi(X'Vj to represent the

class conditional density p(x,y_| a)
j_

) • If the likelihood

17
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ratio l(x,y) for specific observation vectors x and y is

greater than a threshold value T then class l((o^) is

chosen. On the other hand if the ratio is less than T class

2(0^2) i- s chosen.

D. DECISION BOUNDARY OF CENTRALIZED DECISION RULE

Although any decision rule for our problem is at least

two-dimensional, corresponding to observations x and y, it

is still instructive to look at the likelihood ratio for a

single variable x. The decision boundary of a

one-dimensional case is relatively simple as Fig. 2.5 shows.

CHOOSB (A).
^cHcose w,

-*
l * ===^

BOUNDARY POINTS

Figure 2.5 Decision Boundary of One-Dimensional Case

The decision boundary is just given as a set of points on

the x axis.

18
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In the two-dimensional case the decision boundary is

more complicated. For Gaussian random vectors it could be a

straight line, ellipse, hyperbola, parabola or a

combination.

fc> ( fcz

J V *

Figure 2.6 Decision Boundary of

Two-Dimensional Case (Hyperbola)

Fig. 2.6 shows an example, if observation variables x and y

are outside the curve lines i.e. in region l(Ri) the

decision is class 1, if inside i.e. in region 2(R.2) the

decision is class 2.

When the dimension of the observations is more than two,

it is more difficult to visualize the decision boundary but

the concept is still useful. A centralized decision rule

uses the x and y vectors together directly in its algorithm.

19
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All equations use joint probability densities such as

Pl(£.'l)> P2(£>y.) which determine the multidimensional
decision boundary.

20
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III. DISTRIBUTED DECISION RULE

A. BACKGROUND

The AEGIS weapons system simulation project, currently

being conducted at the Naval Postgraduate School, is

attempting to determine the feasibility of replacing the

larger and relatively expensive mainframe computer, the

AN/UYK-7, with a system of 16 or 32 bit VLSI computers [Ref.

3].

OBSERVATION
VECTOR x

Q

SENSOR

©
PROCESSOR

LIMITED BANDWIDTH

COMMUNICATION

OBSERVATION
VECTOR i

Q

SENSOR

<§>

PROCESSOR

Figure 3.1 Distributed Decision Scenario

As the capabilities and performance of microcomputers

continue to improve, it is becoming apparent that an

integrated multiprocessor system of less expensive, compact

microcomputers can manage many real-time applications that

have previously used mainframe computers. This set of

21
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microcomputers has been used to demonstrate our distributed

decision rule in a realistic environment [Ref. 1] . The

computers have been organized to simulate two sensors

observing the same object for purposes of detection and/or

classification.

As illustrated in Fig. 3.1, sensor A deals with the

observation vector xQ only, while sensor B deals with the

observation vector y exclusively. A centralized decision

rule uses both observation vectors x and y Q at once in a

single processor to determine its decision. In a

distributed decision procedure, each processor cannot use

both vectors together because of the limited bandwidth

communication. Nevertheless, by exchange of some minimum

essential information, each processor makes a decision which

is quite reliable. The concepts will be developed

mathematically in this chapter and tested experimentally in

the following chapter.

B. DEFINITION

In order to introduce the concepts of three decision

algorithms here each algorithm is presented mathematically.

These algorithms are:

1 Centralized Decision Algorithm (CD. A)

2 Distributed Decision Algorithm A (D.D.A)

3 Distributed Decision Algorithm B (D.D.B)

1 . Centralized Decision Algorithm

The concept of a likelihood ratio was introduced in

Chapter 2 Section C. From the likelihood ratio the

centralized decision rule is derived. The likelihood ratio

for Gaussian data is expressed (using Eq. 2.3 and Eq . 2.9)

as follows:

22
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/(jl)
= P\{±)

Pl{±)

KM exp

K(2) exp " T [±~ m.
{2)

)

T K {2)~\±- rnm' 2
')

(3.1)

> Pr ( ^2 )

= T
< Pr(<*l)

where vector z, m^ 1 ^, and matrix [K^ 1
'] were introduced in

Eq . 2.4. Here the subscript 1 and 2 means class 1 and class

2 respectively in the two class case. Taking the natural

logarithm of both sides of Eq . 3.1 yields this following

centralized decision algorithm:

1
[
(JL

_ mM) T KM-\z_- mW)
(3.2)

" (_£.- m (1)
)

r
tf

(irl
(A- m [1)

) + In
|K< 2

>| >

1

K* 1
*!

<
In r

Such a centralized decision procedure is shown in Fig. 3.2.

2 . Separation of Centralized Decision Algorithm into x,.

and 3k Observation Vector Components

Although Eq . 3.2 adequately represents the

centralized decision rule, we want to put it in a form

involving vectors xQ , £Q separately and certain partitions

of the matrices K^), K^ 2 ), m^ 1 ), and m^ 2
) for the two

classes. This will help us to develop the distributed

decision rules and enable us to more directly compare the

distributed rules to the centralized rule. Fig. 3.2 shows a

scenario using both observation vectors in a centralized

processor. To develop a distributed form of the decision

algorithm, we proceed as follows. Using a conditional

probability law the joint probability p(x,y) is equivalent

to:

23
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Pi(*_dL )
= PiijL ) Pi(jL\*_) * »=1,2 (3.3)

Figure 3.2 Centralized Decision Scenario

Taking the log base e of both sides leads to:

In Pi ( x_,y_ )
= In p, ( x_ ) + In p, ( j^ |

x_ ) , « =1,2 (3.4)

24
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Eq. 3.4 shows how the probability density can be distributed

into two parts, where one part is a function of x only and

the other part is a function of y given x. For the Gaussian

case the probability density function of random vector x is:

PiijL )

=

(2tt) z

J

K til 2

exp \ijL-m* {,)
\

T I^rMjL-i^ ]

(3.5)

, i=l,2

The conditional probability density function of vector
y_

given x[Ref. 2] is:

Pi ( JL I JL )
= 1

(2»)
2

I KJV, I

2

exp {[x-^fll^lM'il'MjL-^f'i

(3.6)

, r=l,2

where

K(9x
=K(«)-B(«) r [K(')]-iB(0, i=l,2 (3.7)

25
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and

2b
(
fl

- 2»
(0 + [BA'

)

]

r
[Ki

l

'

,

l-
,

[x " ^ ( °] ,
i-W (3.8)

In Eqs. 3.7 and 3.8, [Kyj x] and njy
(

x

is easily

calculated using all parameters and both observation vectors

y and xQ directly. Thus the conditional probability

density function p(vjx) is determined without any

difficulties. Using the above expressions Eqs. 3.5 and 3.6,

Eq . 3.1 becomes

:

PiJJLiSL ) PiLjL ) Pi(JL\JL )

P 2(lii ) Pziji) P2(JL\*-)

Ki 1
) exp -}[^-^ (1)

]

r [KJV(^ — m. :i)

]

Ki 2 ) exp --[*.- r2z
(2)

]

r
l
K i

2)
]

_1
[_* - mz

{2)
}

K
y
l\\

|

2 exp -jijL-^fii'PiV.rM^-^fi]

*
y<f>2 I

2 «p -{tx-^fUMK^l-Mx-^z

(3.9)

> Pr ( ^2 )

< Pr( <*>1 )w 2

= T

Finally by taking the natural logarithm of both sides, Eq

3 . 9 becomes

:

26
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x a (£.0) + x b{]Lo\±o) s lnT
< (3.10)

where

X a (£.0) = J [£o-W 2,
]

r PJt'fej-^

-[£o-^ (1)
]

r [Kj 1)]" 1 [^ - m,(D] + h
Ki 2

)

Ki 1
)

(3.11)

A fl(j/.ol£_o) = — ly -^ (

fU
r [K^r 1 ^- Wf>]

kJ 2
)

- llLD - sX\]
T

[KJV,]-
1

L^o - m, (
fi] + In IM^

K(»)

(3.12)

Eq . 3.10 suggests a distributed form for the decision rule

which is described in the next section.

3 . Distributed Decision Rule A

Fig. 3.1 shows that processor A uses vector >^ only

and processor B uses vector y Q only. In this distributed

decision rule the processor A which is to compute \.(x )

has no problem because it observes vector _x directly and it

27
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has all the other parameters needed in Eq. 3.11. Processor

B, which is to compute ^B(y |x ), has a problem however

because it does not have direct access to x
<}

. This other

observation vector appears in Eq . 3.8; thus Eq . 3.12 is

dependent on x .

If there exists a way to estimate the observation

vector xQ using known parameters and sensor B's own

observation vector y , then the estimated jc which we denote

by x^ can be used in Eq . 3.8 instead of xQ itself. This

procedure is known as a generalized likelihood ratio test

[Ref. 4]. In this case sensor B will have no problem in the

computation since it is assumed that the other parameters

necessary to compute njy
i x and K

i x are already known.

To obtain an estimate Xj ,
processor B considers the

following conditional density:

Pi ( JL I JL )
=

N_
J_

(2tt)
2

I

KW '

2

exp

*
I y

- \\±-mX\] T i 1-1
i
Kz|'yJ m (,»')

(3.13)

, i-l,2

In particular processor B chooses x as the value that

maximizes p^(x|^r). Because of its Gaussian form, Eq . 3.13

is maximized when x = mv . . From the symmetry of Eqs . 3.6

and 3.13 the following estimate is obtained(see Eq . 3.8).

x. = ra„ = m
:

(0 + Bz(;)[K |

{')]-i[^_^(0], ,=i,2 (3.14)

28
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Now processor B can use x which is calculated by

known parameters mx , [Bxy ] ,
[K_] , Blyi and its own

observation vector y in Eq . 3.10 to implement a distributed

decision algorithm. In this algorithm Eq . 3.10 is modified

to the form:

*a(*J>) + X b(vLo) < ^ T (3.15)

ui 2

where

A
fi (Xo) - Wolii) ( 3 - 16 )

and where AB(y |x^) is given by Eq . 3.12 with x
Q

replaced

by &^ of Eq . 3.14. Specifically x-^ will be used in the

computation of E vlx anc* x 2 will be used in the

computation of m yi x as these terms appear in Eq . 3.12.

The term A^(xQ ) is exactly the same as in Eqs . 3.10 and

3.11.

Let us summarize the the results as follows. In

this distributed decision rule A A^(x Q ) is the same as was

shown in the centralized decision rule of Eq. 3.10. However

X'g(y ) is different from AB(y |x ) in the centralized

decision rule. Actually ^B^Zo^ ^ s simplified notation

for the term AB (y |Xi)- Both AA (x
Q ) and A' B (y Q ) are

single statistics which must be added together and compared

to the threshold value T to decide the class of the observed

object. These statistics AA ( X ) and A' B (y ) are

displayed in Eq . 3.11 and 3.16.
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PROCESSOR A A/-

All Predetermined

Parameters

rnj'', m
v
('), K<'',K<",Bi

i

;)
)

, = 1,2

Calculate

x a (
r.o)

Calculate

A 4 T*o)

and send

x a (£o) + x b[}Lo) <
lnr

V.

PROCESSOR B

All Predetermined

Parameters

m,!' 1

,
m}'\ Kj'>, K W, B£), » = 1,2

Calculate

Calculate

^s '

(jSLo)

and send

a b t&o) + A 4 Gilo) < lnr

») b)

Figure 3.3 Block Diagram of Distributed Decision

Algorithms (a) Type A(D.D.A) (b) Type B(D.D.B)
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The single statistic \n(y Q ) which is calculated

in processor B is transmitted to processor A through the

limited bandwidth communication link. Processor A will then

have both its own calculated statistic A^(x Q ) an^ tne

statistic A'B(y ) received from processor B. Therefore it

can decide the class of observed object using Eq . 3.15. Eq

.

3.15 is called distributed decision rule A because the class

decision is made in processor A. This algorithm is

illustrated in Fig. 3.3 (a).

4. Distributed Decision Rule B

Distributed decision rule A was considered in the

previous section. A symmetric form of this algorithm is

illustrated in Fig. 3.3(b). This algorithm uses a symmetric

form of the conditional probability law of Eq . 3.3.

PrijL'JL )
= Pi(jL) Pi(±\jL ) •

l
' = 1 < 2 (3.17)

which leads to:

In Pi ( x_,jl )
= In p, ( j/_ ) + In p, ( ^ | j/J , i - 1,2 ( 3 . 18 )

By analogy and symmetry with the equations used in

distributed decision algorithm A, the following algorithm is

derived

u/,

*b(!Lo) + A .4(£o) < InT (3.19)
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where

X B (]Lo) =
"J

b/o-^ (2)
]

r WT^-^

-[y.o-^(1)
]

r [K^)]- 1

fc, - mW] + In
K.!

2
)

Km
y

(3.20)

A ^(£o) = -j ^o-^jMK^r^-rn^J

-to-^UMKiVj- 1 ^--^, ]+ln '^*
I
yi -*

I yi

*
I y

(3.21)

where K . and m„ . _. are computed from equations analogous tox
i y —x

| y
Eqs . 3.7 and 3.8. Processor B calculates the single

statistic ^b^2o) using its own observation vector y .

Processor A computes the single statistic \ f ^(xQ ) using

the following estimate for the vector y:

1 = m(f) = m(') + B i')
T [Ki')]-i ^_ _^(0] , I= i,2 (3.22)
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Thus A.'a(2£o) -*- s a simplified notation for ^A^-o'Zi^ anc*

is transmitted to processor B through the communication

link. Therefore processor B computes Ag(y ) locally and

receives A'a.(xq ) from processor A. Then processor B makes

a decision about the class of the observed object using Eq

.

3.19. This procedure represents distributed decision rule B

because the class decision is made by processor B.

C. COMPARISON WITH THE CENTRALIZED DECISION RULE

Three algorithms were introduced and explained in the

previous sections A and B. Table 1 shows the differences

among them very briefly. Notice that the two forms (Type A

and Type B) given for the centralized decision rule are

equivalent. In distributed decision algorithm A, processor

B uses the estimated value x^ instead of the observed value

Xq and sends the result A'g(y ) to processor A. In

distributed decision algorithm B, processor A uses y^

instead of y Q and sends A'a( x ) to B. These differences

are visualized simply in Table 2.

Use of the estimates x^ in distributed decision

algorithm A, and yj in distributed decision algorithm B

makes the results of these algorithms different from each

other and different from the centralized decision rule.

Further, the use of rules A and B together can result in an

ambiguous situation where the two decisions are different.

This can be resolved in a number of ways discussed later.

The key components which make the algorithms different

from one another are the use of the estimate x^ in

distributed decision algorithm A, and y^ in distributed

decision algorithm B. If the estimated vectors x^ and y^

are close to the actual observation vectors xQ and y Q

respectively then the results of the distributed algoritbms

A and B would be close to each other and close to the

centralized algorithm. Although we have not been able to

characterize theoretically the relative performance of these
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algorithms we can show their results experimentally on a

number of different test cases. These results are given in

the next chapter.
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IV. SIMULATION

This chapter contains an evaluation and comparison of

distributed decision rules A and B, and the centralized

decision rule. The generation of random observation vectors

and the calculation of their resulting statistics are

discussed in sections A and B. In section C the results of

the decision algorithms are compared to the results obtained

from classification using a centralized algorithm.

A. RANDOM VECTOR GENERATION

The observation vectors x and £ are generated by using a

linear difference equation with white noise excitation.

This difference equation can model, for example, the time

series of radar cross section values that result when the

target is observed by the sensors over a relatively short

period of time. If W-^ and W£ are independent white noise

processes this difference equation has the form:

= A

+ A,

'(/ - 1)

(/ - 1)

(I ~

(I ~

+ A

+ K
1

T

(1-2)
(1-2)

w
x(l )

">
2 ( ' )

+

(4.1)

where

4,
-

ayi a
y

(4.2)
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This generates a pair of time series for x and y that are

correlated and have zero mean. The measurements x and y

that represent the observations are then defined by:

mh x'(I ) + m
a

y'{ I
) + m

y
(4.3)

where m„ and are the mean values of the observations.
•x — "V

The observation vectors x and y_ then represent n samples of

the time series. In this procedure it is assumed that [A-]

and [K..] ^' are given in advance and that white noise W-i(I)

and Wo (I) have been previously generated and are available

in a white noise data file.

The difference equation is implemented by a program with

the title "GEN" [Appendix A]. If, for example, the

observation vectors x and y have 32 time points each and a

set of 128 independent vectors is needed then the program

GEN generates two data sets. Each is an array of size 128 X

32 whose rows represent individual vectors x and y. These

data are written to the disk with file names such as "Xll",

"X12", "Yll", and "Y12" to be used later in the decision

test algorithm. In the file name X12 the first number "1"

represents test case one, and second number 2 stands for

class 2 data.

B. GENERATION OF STATISTICS OF RANDOM VECTORS

After the observation vectors in files Xll, Yll, X12

,

and Y12 are generated, the joint statistics of these vectors

are calculated. The statistics are used in the decision

algorithms

.

Let the dimension of the vectors be N and M and the

number of vectors generated be L. Then mean, covariance,

and cross covariance parameters are calculated using the

following equations:
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m. - 7 &lmL
Ar = 1

(4.4)

2b T Sx *) (4.5)

L
* = i

(4.6)

L
k = \

(4.7)

B
*y = 4 E (

L
Ar = 1

:

(k)
- Eb ) (x(M - ™* )

r
(4.8)

Observe that two sets of each of the parameters in Eqs . 4.4

- 4.8 are required: one set for class 1 and one set for
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class 2. These calculations are performed by the program

"STAT" [Appendix B] and the parameters are written to output

files. From the file of vectors Xll the program STAT

generates m„^ '
, and [K__^ '] ; from Yll it produces m,r

^ '

and [Ky '] ; and from both Xll and Yll it calculates

[B-_-,A ']. These represent the statistical parameters of the

class 1 data. The files X12 and Y12 are used in a similar

manner to produce m ( 2 ), [K ( 2 )], m ( 2 ), [K ( 2 )], and
/ «

x

-x x —y y
[Bvv ^ ']. These represent the statistical parameters of the

class 2 data.

C. CLASSIFICATION PROGRAM

When observation vectors and their statistics are

available, one can test the distributed classification

algorithms and compare their results to the results of the

centralized algorithm. A program "DECAL" [Appendix C] was

written to implement these decision algorithms. This

program has three main parts consisting of distributed

decision rule A(denoted simply by "A"), distributed decision

rule B(denoted simply by "B"), and the centralized decision

rule(denoted simply by "C"). In this program every

algorithm computes its own log likelihood ratio statistic to

be compared to the threshold value. The statistics

corresponding to each pair of observation vectors for each

of the decision rules, A, B, and C are written to a disk

file and used to compute the correct decision rates.

A Fortran program "ANAL" [Appendix D] generates the

varying threshold values that are used with the data

generated by DECAL to decide upon the classes of the

observed objects. This organization of programs allows us

to generate classification results for many threshold values

without excessive computation. The threshold values are

expressed in terms of the prior probabilities P r (ct)-i) and

pr (o;2) which are chosen so that the condition of "p
r (o)i) +

p r (a>2) = 1-0" is satisfied.
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D. CLASSIFICATION EXPERIMENTS

If a correct analysis is performed, one can fit an

appropriate time series model to the sensor data to

represent the observations made on two distinct types of

targets such as those shown in Fig. 4.1.

Clut 1

Object

Y12

LIMITED BANDWIDTHSENSOR SENSOR

©
PROCE SSOR

COMMUNICATION d

PROC

)

ESSOR

Figure 4.1 Aircraft Type Detection

and Observation Vectors

For the analysis here we are more interested in

characterizing the distributed decision algorithm
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performance for various second moment statistical properties

of the observation vectors, such as mean, variance, and

correlation. The cases chosen for analysis should not be

interpreted to mean that we are attempting to model real

target data.

For our experiments, we generated data according to Eqs.

4.1 through 4.3 with the order of the difference

equation(p) equal to one. Four different cases were

considered; their parameters are given in Table 3.

TABLE 3

PARAMETERS IN DIFFERENCE EQUATIONS

TEST CLASS 1 CLASS 2

CASE NO [Ax ] [KJ* M [A
x ] [Kj^ M

1.5

1.5

1

1

Each test case used data from two different classes. In all

but case 1 the filter coefficients [A-jJ and/or the

covariance matrix [K^] ' resulted in observation vectors x

and y that are correlated with each other. If the

observation vectors x and y are uncorrelated , the

conditional probability density function p(y|x) becomes the

same as the unconditional density function p(y). If this is

true for both classes, as in case 1, then the three decision

rules A, B, and C will be equivalent.
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Several specific cases are represented here. In cases 1

and 3, the class 2 filter has negative At parameters; this

makes the time series change very rapidly up and down.

Since the data of class 1 does not have this property, we

expect that the decision rules can discriminate between the

two classes based on the correlation of the time series. In

test case 2, class 2 has non-zero mean while class 1 has

zero mean. Since the mean values are the only differences,

the classification can only be based on these differences in

the mean values. In test case 4 the mean values are also

non-zero but both the class 1 mean and the class 2 mean are

the same. In addition, the filter parameters for each class

and the noise covariances are very similar. This makes the

classification of the observations a relatively difficult

problem.

TABLE 4

CORRECT DECISION
4-DIMENSIONAL 128

RATE (%

)

VECTORS

TEST CASE CLASS A B C

CASE #1 CLASS-1 85.9 85.9 85 2

CLASS-2 84.4 85.2 82 8

CASE #2 CLASS-1 93.0 93.8 92 2

CLASS-2 85.2 85.9 89 1

CASE #3 CLASS-1 81.3 83.6 85 .2

CLASS-2 85.9 86.7 85 .9

CASE #4 CLASS-1 85.9 87.5 57 .0

CLASS-2 19.5 17.2 60 .2

The results of classification for these test cases is

shown in Tables 4 and 5 . The results are based on a

threshold corresponding to equal prior probabilities. The

43



www.manaraa.com

first test set was 4 - dimensional (i.e. x and y each

consisted of four time samples) and consisted of 128 pairs

of observation vectors x and £. These results are given in

Table 4. Most of the results show probabilities of correct

classification in the range of about 85 to 90 percent. For

test case 4 the probability of correct classification

achieved by decision rules A and B is quite high for class 1

but very low for class 2. However, if the classifier

threshold is adjusted by choosing different prior

probabilities, the results are similar (but slightly worse)

than the results for the centralized rule C. (The reader

may refer to Appendix E.)

TABLE 5

CORRECT DECISION
32-DIMENSIONAL 128

RATE(%)
VECTORS

TEST CASE CLASS A B C

CASE #1 CLASS-

1

100. 100. 100.

. CLASS-2 100. 100. 100.

CASE #2 CLASS-

1

100. 100. 100.

CLASS-2 100. 100. 100.

CASE #3 CLASS-

1

100. 100. 100.

CLASS-2 99.2 99.2 93.8

CASE #4 CLASS-

1

100. 100. 88.3

CLASS-2 13.3 6.3 91.4

The second test set was 32-dimensional and again

consisted of 128 observation vectors x and y. The results

are given in Table 5. Note that in cases 1, 2, and 3 all

vectors were classified correctly. That shows that the

classes are easily separated by any of the decision rules if

32 time samples are used.
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In test case 4, the degraded performance is explained by

the parameters in Table 3. Here both classes have similar

correlation parameters, and both mean values are identical.

This case was designed to be the most difficult.

By varying the prior probabilities one can change the

threshold in the decision algorithms and therefore trade off

the probability of correct classification of one class for

incorrect classification of the other class. A graph of

these probabilities is known as an "operating

characteristic" for the decision rule. The results in

Tables 4 and 5 represent a single point on each of the

operating characteristics. Operating characteristics for

cases 1,2,3, and 4 of Table 4 and case 4 of Table 5 are

given in Figs. 4.2 through 4.5. The three different types

of lines in the graph represent the results of the three

different algorithms. These results are also given as

tables in the Appendices. The correct decision rate is

shown in the output data "GRAPH4" [Appendix E] for the

4-dimensional cases and "GRAPH32" [Appendix F] for the

32-dimensional cases.

It is interesting to note that in most cases the

performance of the distributed decision rules compared

favorably to that of the centralized decision rule. It is

also interesing to note that the performance of decision

rules A and B was always close together although the data in

the test cases exhibited no symmetry in their defining

parameters

.
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V. CONCLUSIONS

The specific goals were all met in this thesis. The

distributed decision rules were introduced and compared to

the centralized decision rule. Since only one observation

vector (either x or y) is available in each processor, the

results of the distributed decision rule can not in general

be the same as those of a centralized decision rule. The

decision algorithms were explained mathematically and

compared to one another. The difference between the

algorithms arises from the fact that one sensor must

estimate the observation vector of the other sensor using

the locally measured observation vector and all available

parameters. Simulation experiments for a number of cases

with different statistical properties showed that when

multiple observations are involved, the two distributed

decision rules compare favorably to the centralized decision

rule. Even when the vectors have high dimensionality, only

a fixed limited amount of interprocessor communication is

required.

In the two distributed decision rules, if each processor

has a different class decision for the commonly observed

object, an ambiguous situation results. In this case, one

can either disregard that decision or use the following

method. By comparing each log likelihood ratio statistic to

the threshold value, one can select the decision which is

further from the threshold value. This procedure is

intuitively reasonable because decisions made when the

statistic is close to the threshold value (observations in

the region near the decision boundary) are more likely to be

incorrect

.

Further research may center on analytical

characterization of these distributed decision rules and

further analysis of the situation where the two rules A and

B do not agree.
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APPENDIX A

GEN FORTRAN

c This program generates two sets of random observation

c vectors i.e. Xll and Yll.

REAL*8 A(9,2,2) .MX ,MY,XP(32 ) , YP(32) ,X(32)

,

INTEGER H,I,J,K,L,M,N,P

N=32
M=32
P=l

READ (2,*) MX. MY
READ (2,*) (((A?I,J,K),K=1,2),J=1.2),I=1,P)
READ(2|*; ((KW(i;j),J=l 5 2),I=l,25

10 READ(3 * END=50) (Wl (I ) , 1= 1 ,N)
READ(3|*3 (W2(I),I=1,N)

XP ( 1
) =KW( 1 , 1

) -Wl ( 1 ) +KW( 1 , 2
) *W2 ( 1

)

YP(1;=KW(2,1)"W1(1) +KW(2,2)"W2(1)

DO 30 1=2,

N

XP(IJ=0.
= 0.

XP 1
YP(I)
K=I
IF (I.GT.P) K=P
L=I-1

DO 20 J=1,K
XP ( I ) =XP ( I ) +A ( J , 1 , 1

) *XP (L ) +A ( J , 1 , 2
) *YP (L

)

YP(I)=YP(I)+A(J,2,1)*XP(L)+A(J,2,2)*YP(L)

20 CONTINUE
XP(I)= XP(I) + KW(1,1)*W1(I) + KW(1,2)*W2(I)
YP(lj= YP(I) + KW(2,1)"W1(I) + KW(2,2)*W2(I)

30 CONTINUE

DO 40 I=1,N
X(I)=XP(I)+MX
Y(IJ=YP(I) +MY

40 CONTII
WRITE (7,41) (X(I),I=1,N)

41 FORMAT(lX,4f2X,E15!8))
WRITE (8,42) CY7l),I=i,M)

42 FORMAT(lX,4(2X,E15.8))

GO TO 10
50 STOP

END
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APPENDIX B

STAT FORTRAN

C This program computes all the necessary

c parameters of the given sets of vectors

c i.e. Xll and 111, or X12 and Y12.

c Matrix manipulation subroutines are

c from the IMSL library [Ref. 5].

REAL-8 MX(32),MY(32) ,XP ( 32 ) , YP(32 )

,

+ X(32KY(32),KWf32.3ij,
+ KX(32\32),KY ( 32, 32) ,BXY(32 , 32 )

,

XD(32 A 128),YD(32\l28),
+ SKX(32\32) , SKY (32\32) , SBXY(32,32)

c

c
INTEGER I,J,K,L,M,N,IER

L=128
M=32
N=32

READ(2* END=05) ( (XD(I ,J) , J=1,N) ,I=1,L)
READ (3, J } [TyDCI.JJ , J= 1 ,M) , 1= 1 ,L

c WRITE (8,*) f(XD(I,J),J=l,N),I=l,L
c WRITE(9,*) ((YD(I,J) ,J=] ,M)

, ,l>,

05 MX(I)=0.
MY ( I ) = .

DO 20 1=1.

N

DO 10 J=1,L
MX(I)=MX(I)+XD(J,I
MY(I) =MY(I) + YD(J,I

10 CONTINUE
MX(I)=1./L*MX(I)
MY(I)=l-/L*MYrl1

20 CONTINUE

DO 23 1=1.

N

DO 23 J=1,N
SKX(I,J)=0.
SKY CIaJ 1=0.
SBXY(I,J)=0

23 CONTINUE
c
25

c
c

READ (4, -.END:
READ f 5 , * J ( Y

i

WRITE (6,*) (Xi
WRITE (7,*) (Yl

:35) XI
I) ,1 = 1 M
I),I=1,N
[I),I=1,M

c

27

DO 27 1=1.

N

«i}» I:
CONTINUE

-MXflj
-MX(I)

c

,1=1, N)

CALL VMULFP fX , X , N , 1 , N , N , N ,KX , N , IER)
CALL VMULFP (Y,Y,M,1,M,M,M, KY , M . IERJ
CALL VMULFP (X,Y,N,1,M,N,M, BXY , N , IER

)
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DO

30
c

c
35

40
c

41

42

43

44

45
c

30
DO

I = 1,N
30 J=l N
SKX ( I , J ) = SKX ( I , J ) +KX ( I , J

)

I.jJ+KYXI^JjSKY f I.J 1= SKY f I , J )
+ KY_( I

,

SBXY(I,J)=SBXY(I,J)+BXY(
CONTINUE

J)

GO TO 25

DO 40 I=1,N
DO 40 J=1,N

KX(I,J)=1./L*SKX(I,J)
KYfI.j1=l./L*SKYfI»JJ
BXY(i,J)=l./L*SBXYtl,J)

CONTINUE

WRITE(7
FORMAT
WRITE?7
FORMAT
WRITE?7
FORMAT
WRITE?7
FORMAT
WRITE?7
FORMAT

STOP
END

N)MX(I).I=1,
"15.8)3

1=1, M)

41 i

ix,4(2x e:

lx 4 ( 2X E
43)7ckx(i7j) a^=i,n),i=i,n)
lx;4f2X,Ei5.8))

ixU!x!id?df'
M)

'
I=1 '

M)

j)J=i,n,
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APPENDIX C

DECAL FORTRAN

c This program computes the final scalar values

c of three different algorithms which will be

c compared with the threshold value.

c Matrix manipulation subroutines are from

c the IMSL library [Ref. 5].

c
c"
c
c

c
c

«A. »** »* »•- »•- »•*

c
c

c
c

c
c

c
c

c
c

REAL -8

REAL -8

real- 8 rx , rpy , sum1 , sum2 , sum3 , sum4 , sum5

,

prv!/i,prw2,t,val,
dkx1 , dkx2 , dky1 . dky2 , dkyx1 , dkyx2

,

MIM1,MIM2,C1,C2,

X(32) ,MX1(32) ,MX2(32)
,

YC32KMY1(32].MY2(32

MBlC32l,MB2(_32].
BlMY(3l3,B2MY(32),

IMB1(32) ,IMB2(32) ,BIM1(32) ,BIM2(32)
MBI1(32),MBI2(32),MIB1(32),MIB2(32)

A1(32,32),B1(32)
A2(32,32),B2(32)

WKAREA(1160
KX1
KX2
KYI
KY2
BXY
BXY2
KYX1
KYX2

32,32
32,32
32 32
32.32
32,3
32,32

,IKX1
IKX2
IKY1
IKY2

32
32
32
32

32
32
32
32

,KX1D
,KX2D
,KY1D
,KY2D

32
32
32
32

32
32
32
32

32
32

32
32

IlKYXl(32,32) ,KYX1D
,IKYX2(32,32) ,K'KYX2DC32

BB IX (32, 32) ,BB2X(32,32),
BXlYf32.32),BX2Yf32.32),
BYl(32,^2),BY2(32,3i),

BKB1(32,32) ,BKB2(32,32
IBY1(32,32) ,IBY2(32,32
BYI1(32,32),BYI2(32,32
BIB1(32 32) ,BIB2 32,32

32)
32)

INTEGER I,J,L,M,N,
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+ IA, IDGT, IER, CLASS,
+ SSkLJSylj.HSMijs.SS^2 NCLAS i

>
nclas 2

c******* DECLARATION FOR DIST. B *********

REAL*8 BKXH32.32) ,BKX2(32 .32) ,

+ BXl(32.52KBX2C32.3i1.
+ KXYlfa2.32j,KXY2?32.32).
+ KXY1D(32,32) ,KXY2D(32,32)

,

+ IKXYlf32.32),IKXY2{32,32),
+ IBX1(32 ,32>,iBX2(32,32),
+ BXI1(32,32),BXI2(32,32),
+ BIX1(32.32),BIX2(32,32),
+ A3(32,32),M(32,32),
+ MIX1(32),MIX2(32), B3 (32) ,B4(32)

,
+ BIP1C32) ,BIP2(32)

,
MBX1732 ) ,MBX2 ( 32

+ B1MX(32) ,B2MX(32)

,

MBlXf 32 1 ,MB2X(32
+ MKY1(32) ,MKY2(32)

,

IXB1 (32 ) , IXB2 (32

REAL*8 DKXY1,DKXY2,MXM1.MXM2, C3.C4,
+ SUM11 , SUM12 , SUM13 , SUM14 , SUM15

,

+ RY , RPX , VA

INTEGER CLA
c

f> 0* « *» *» #% *% #% ** #» *» *» *% #» ** #* *» *% *» *% ** *» *% ** ** *» *» #» ** *% *% ** ** #»

C

REAL-8 A5(32.32),B5j[32),
+ XMX1(32) ,XMX2(32)

,

BYT1(32) ,BYT2(32)

,

+ MBT1(32) ,MBT2(32)

,

KBT1 ( 32 ) ,KBT2 ( 32 )

,

+ MBK1(32),MBK2(32),

+ MT1,MT2,RBY,C5,SUM24,SUM25,V

INTEGER CL, COUNT

c INITIALIZATION!!!!

NCL1=0
NCL2=0
NCLA1=0
NCLA2=0
NCLAS1=0
NCLAS2=0

c
L=0
M=32
N=32
IDGT=4

c PRW2=.5
c PRW1=.5
c t=dlogTprwi/prw2)
c WRITE(7,*V T= ,T

cINPUT PARAMETERS ! ! ! !

!

READ(2 *HMX1(IAD(2 *](MX1(I) .I=1,N)
WRITE(7,*)(MXl(l),i=l,N)

READ(2,"HMYI(I);i = i,M)
WRITE(7,*1fMYl(l),i=l,N'

READ?2,"H(KX1(I.JJ,J=1,n1 ,I=1,N)
WRITE(7,*)C(KXi(I J) J=l N),i=l,N)

READ (2,*) ((KYI (I, J) J=1,m1 1=1, M)
WRITE (7 *)((KYi(I J 1,^=1 M),i=l,M)

READ(2,*)((BXY1(I,J),J=1,M5,I=1,N5
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c WRITE(7,*)((BXY1(I,J),J=1,M),I=1,N)
c
c

AD(3 *)(MX2(I)»I=l,Nl
WRITE (7 y-'UHXl I),1=1,N)

'7 *)(MY2(I),i=l,M

READ (3
WR

READ
WRITE ( 7 *

)
(MY2 I ) ,

I = 1 , M

)

READ?3,*H (KX2(l'j1 J=1,NJ ,I=1,N)
WRITE (7 :*)((kxl(l J) J=l N),1=1,N)

READ (3,*) (KY2(I.J) J=i,Ml 1=1, M)
c WRITE (7 ,*)((KY2(I J),J=1 M),i=l.M)

READ(3,*H(BXY2(l'j] ,J=l tM) ,I=l,Nj

c
c

..„.-.„.„.-..„.„._.-..-..,..-.. ... .. .„.„. . ......... •

c************ DISTRIBUTED RULE A *******
c
c
c
c

DO 01 I=1,N
DO 01 J=1,N

KX1D(I J)=KX1(I,J)
KX2D(I,J1=KX2(I,J)

01 CONTINUE
c WRITE(7,*)((KX1D(I,J

c
c

WRITE(7,*)((KX1D(I,J) ,J=1,N),I=1,N)
WRITE ( 7

, * ) ( ( KX2D (I |

J

)\ J=

1

\ N

)

\
1= 1 , N

)

DO 02 1=1,

M

DO 02 J=1,M
KY1D(I,J)=KY1(I,J
KY2D(I,J; =KY2(I,J

02 CONTINUE

cSUBROUTINES! ! ! ! ! !

CALL LINV2F (KX1 ,N , N , IKX1 , IDGT , WKAREA, IER)
WRITE ( 7

,

* ) ( ( IKXl ( I , J ) , J= 1 , N ) ,
I = 1 , N J

WRITEf7:*)(CKXl(I,^)i^=l,N),l=l,N)
CALL LINV2F f KX2 ,N . N , IKX2 .IDGT .WKAREA, IER)

WRITE(7.,*)((IKX2(I,J)
,
J=l ,N) , 1= 1 ,N)

CALL LINV2F (KYI .M.M.IKY1 .IDGT .WKAREA, IER)
c WRITEf 7

,
* ) (?IKYl(I, Jj , J=1,M) ,1=1, M)

CALL LINV2F [KY2 .M.M.IKY2 .IDGT , WKAREA, IER)
c WRITE(7,*)((IKY2(I,J) ,J=1,M) ,I=1,M)

CALL DTERM (N ,KX1D,DKX1 ,N)
c WRITE] 7,-) 'DKX1= ' .DKX1

CALL DTERM (N ,KX2D ,DKX2 ,N

)

c WRITE (7,-)
? DKX2=

'
, DKX2

DTERM (M,KY1D,DKY1,M'
WRITE? 7,*) 'DKY1=' ,DKYi:

c

c
c

CALL DTERM (M.KY1D ,DKY1 ,M)
WRITE? 7,*) DKY1=' ,DKY1

CALL DTERM (M ,KY2D ,DKY2 ,M)
WRITE ( 7,-)

? DKY2= T ,DKY2

CALL VMULFM (BXY1 , IKXl ,N ,M, N , N ,N , BB1X ,M, IER)
CALL VMULFF (BXY1 , IKY1 ,N ,M,M, N ,M, BX1Y , N , IER)

c WRITE (7,*) ((IKXl (I, J) ,J=1,N) ,1=
c
c
c
c
c
c

WRITE (7,*) ((IKXl (I, J) ,J=1,N),I=1,N)
WRITEC7 *1(1IKY1(I,J) , J= 1 ,M) , 1= 1 ,M)
WRITE(7,")((BXYlCI,^),^=l,MKl=l,N)
WRITE(),")UBBlX(i,J ,J=i,N),I=l,M)
WRITE(7,*)((BX1Y(I.J; , J=1,M) ,I=1,N)

CALL VMULFM (BXY2 , IKX2 ,N ,M , N , N ,N , BB2X ,M, IER)
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c
c
c
c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

10
c
c
c
c

c
c
c
c

CALL VMULFF (BXY2 , IKY2 ,N ,M,M,N ,M,BX2Y ,N , IER)

20
c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

WRITE (7,

*

WRITE (7,*'
WRITE (7,*'
WRITE (7,

*

WRITE (7,

*

IKX2(I,J
'IKY2(I,J
'BXY2fI,J
BB2X(I,J
BX2Y(I,J

CALL VMULFF (BB1X,BXY1,M
CALL VMULFF (BB2X,BXY2,M

WRITE ( 7
, * ) ( (BKB 1 ( I ,

J

WRITE(7,")((BKB2(I,J

CALL VMULFF (BB1X,BX1Y,M
CALL VMULFF (BB2X,BX2Y,M

J=l
J=l
J=l
J=l
J=l

N,M
N,M

J=l
J=l

N,M
N,M

,1=1, N,
1=1 M
1=1 N
1=1 M
1=1 N

M,N,BKB1,M,IER)
M,N,BKB2,M,IER)

M),I=1,M)
M),I=1,M)

M,N,BY1,M,IER)
M,N,BY2,M,IER)

WRITE(7,*)((BY1(I,J) , J=1,M) ,I=1,M)
WRITE(7,*)((BY2(I,J),J=1,M),I=1,M)

CALL VMULFF (BY1 ,MY1 ,M,M, 1 ,M,M,B1MY,M, IER)
CALL VMULFF (BY2 ,MY2 ,M ,M, 1 ,M,M , B2MY ,M, IER)

WRITE (7,*) (B1MY(I) ,1=1, M)
WRITE(7,-'-)(B2MY(I) ,I=1,M)

DO 10 1=1,

M

MB1(I)=MY1(I
MB2(I)=MY2(I

CONTINUE

•BIMY(I)
•B2MY(I)

WRITE(7,-)(MB1(I) ,I=1,M)
WRITE(7,*)(MB2(I),I=1,M)

CALL VMULFF (MX1 , IKX1, 1 ,N,N, 1 ,N,MK1 , 1 , IER)
CALL VMULFF (MX2 , IKX2 , 1 ,N,N, 1 ,N,MK2 , 1 , IER)

WRITE(7, *) (MK1(I) ,1=1, M)
WRITE(7,")(MK2(I) ,1=1, M)

DO 20 I=1,M
DO 20 J=1,M

CONTINUE

KYX 1(I,J)=KY1(I,J)- BKB 1 ( I , J

)

KYX2 (I , J ) =KY2 ( I , J ) -BKB2 (I , J)

KYX1D(I,J)=KYX1(I,J)
KYX2D(I,J)=KYX2(I,J)

WRITE(7,*)((KYX1(I,J) ,J=1,M),I=1,M)
WRITE(7,*)((KYX2(I,J),J=1,M),I=1,M)

CALL LINV2F (KYX1 ,M,M, IKYX1 , IDGT , WKAREA, IER)
CALL LINV2F (KYX2 ,M,M, IKYX2 , IDGT , WKAREA, IER)

WRITE(7,-)((IKYX1(I,J),J=1,M) ,I=1,M)
WRITE(7,")((IKYX2(I,J),«J=1,M),I=1,M)

(M,KYX1D,DKYX1,M)
(M,KYX2D,DKYX2,M)

WRITE (7,*) 'DKYX1=' ,DKYX1
WRITE ( 7

, *) ' DKYX2 =
' , DKYX2

CALL VMULFF (IKYX1 ,BY1 ,M,M,M,M,M, IBY1 ,M, IER)
CALL VMULFF (IKYX2 ,BY2 ,M,M,M,M,M, IBY2 ,M, IER)

WRITE(7,*)((IBY1(I,J) ,J=1,M),I=1,M)
WRITE(7,")(UBY2(I,J),J=1,M),I=1,M)

CALL DTERM
CALL DTERM
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c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

30
c
c
c
c
c
c

c
c

40

c
c

CALL VMULFF
CALL VMULFF

WRITE (7,*
WRITE (7,*

CALL VMULFM
CALL VMULFM

WRITE ( 7
,

*

WRITE (7,*

CALL VMULFF
CALL VMULFF

WRITE (7,*
WRITE (7,*

CALL VMULFF
CALL VMULFF

WRITE (7,*
WRITE (7,*

CALL VMULFM
CALL VMULFM

WRITE ( 7,*
WRITE ( 7

,

*

CALL VMULFF
CALL VMULFF

WRITE (7,

*

WRITE (7,*

CALL VMULFF
CALL VMULFF

WRITE ( 7
,

*

WRITE (7,*

IKYX 1,MB1,M,M,1,M,M, 1MB 1 ,

M

IKYX2 ,MB2,M,M,1,M,M, IMB2 ,

M

(IMBl(I) ,1=1, M)
(IMB2(I),I=1,M)

BY 1 , IKYX 1,M,M,M,M,M, BYI 1 ,

M

BY2,IKYX2,M,M,M,M,M,BYI2,M

((BYI1(I
((BYI2(I

BYI1,BY1
BYI2,BY2

((BIBlfl
((BIB2(I

BYI1,MB1
BYI2,MB2

(BIM1(I
(BIM2(I

,IER)
,IER)

,IER)
,IER)

J),J=I,M),I=1,M)
J),J=1,M),I=1,M)

M,M,M,M,M,BIB1,M,
M,M,M,M,M,BIB2,M,

J),J=1,M),I=1,M)
J),J=1,M),I-1,M)

M,M,1,M,M,BIM1,M,
M,M,1,M,M,BIM2,M,

= 1,M)
= 1,M)

IER)
IER)

IER)
IER)

1 =

I

MB1,IKYX1,M,1,M,M,M,MBI1,1
MB2,IKYX2,M,1,M,M,M,MBI2,1

,IER)
,IER)

(MBIl(I) ,1=1
(MBI2(I),I=1

MBI1,BY1,1,M
MBI2,BY2,1,M

(MIB1(I) ,1=1
(MIB2(I)|l=l

MBI1,MB1,1,M
MBI2,MB2,1,M

'MIM1=' ,MIM1
'MIM2=

'
,MIM2

M)

M,1,M,MIB1,1,
M,1,M,MIB2,1,

IER)
IER)

M)

1
1

1,M,MIM1,1,
1,M,MIM2,1,

IER)
IER)

DO 30 1=1,

N

Bl(i)=2.*(MKl(I)-MK2(I))
DO 30 J=1,N

A1(I,JJ=IKX2(I,J)-IKX1(I,J)
SUM3=SUM3+MX2(i)-IKX2(I,3)"MX2(J)

+^r*m^ -MXl(I)*lKXl(I,J)*Mil(j)
CONTINUE

WRITE ( 7, *)((A1 (I.J)jJ=l»N) ,I=1,N)
WRITE(7;*)(Bl(I)!l=l,N)'

C1=SUM3+DL0G(DKX2/DKX1)
WRITE (7,*)

? C1=* ,C1

DO 40 1=1.

M

B2(I)=BIM2(I)+MIB2(I)-IMB2(I)-MBI2(I)
+ - ?BIM1 ( I ) +MIB1 ( I

) - 1MB 1 ( I
) -MB I 1 (

I

DO 40 J=1,M
A2(I,J)=IKYX2(I, J)-IBY2(I,J)

+ -BYI2(I.J)+BIB2CI,^)
+ -TlKYXl(l Jj-IBYl(l J)

-BYI1(I,j)+BIB1(I,j5)
CONTINUE

C2=MIM2-MIM1+DL0G(DKYX2/DKYX1)

WRITE(7,*)((A2(I,J) ,J=1,N),I=1,N)

))
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c WRITE(7,*)(B2(I),I=1,N)
c WRITE(7;*) V

C2=' \tl

45 READ(4 * END=299)(X(I) ,I=1,N)
READ(5;-3(Y(I),I=l,rt)

; '

c
c
c

c
c

c
c

L = L+1
WRITE (7,*) (X(I),I=1,N)
WRITE(7,*J (Y(I),I=1,M)

SUM1=0.
SUM2=0.
SUM3=0.
SUM4=0.
SUM5=0.
SUM11=0.
SUM12=0.
SUM13=0.
SUM14=0.
SUM15=0.
SUM24=0.
SUM25=0.

DO 50 1=1.

N

SUM2=SUM2+B1(I)*X(I)
DO 50 J=1,N

SUM1= SUM1 + X ( I
) *A1 (I , J )*X ( J

)

50 CONTINUE
RX=0.5*(SUM1+SUM2+C1)

c

DO 60 1=1.

M

SUM5 = SUMS + B2 ( I ) *Y ( I

)

DO 60 J=1,M
SUM4= SUM4 + Y ( I

) *A2 ( I , J ) *Y ( J

)

60 CONTINUE
RPY= . 5* ( SUM4+ SUM5 + C2

)

VAL=RX+RPY

IF(VAL_.GT,.T) THEN
CLASS:
NCLAS1=NCLAS1+1

ELSE
CLASS=2
NCLAS2=NCLAS2+1

END IF
c
c
c

c*************** DISTRlBy^Eg .^LE^J***********'
cSUBROUTINES! ! ! ! !

!

c
c

100 CALL VMULFP (BX1Y ,BXY1 ,N ,M,N ,N ,N ,BKX1 ,N , IER)
CALL VMULFP (BX2Y ,BXY2 ,N ,M,N ,N ,N ,BKX2 ,N , IER)

c

CALL VMULFF (BX1Y ,BB1X , N ,M,N ,N ,M,BX1 ,N , IER)
CALL VMULFF (BX2Y ,BB2X , N ,M,N ,N ,M, BX2 , N , IER)

CALL VMULFF (BX1 ,MX1 ,N ,N , 1 , N , N ,B1MX , N , IER)
CALL VMULFF (BX2 ,MX2 ,N , N , 1 ,N ,N ,B2MX , N , IER)
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110
c
c

120
c
c

c
c

DO 110 1=1,

N

MB1X(I)=MX1(I)-B1MX(I)
MB2XII)=MX2(I)-B2MX(I)

CONTINUE

CALL VMULFF (MY1 , IKY1 , 1 ,M,M, 1 ,M ,MKY1 , 1 , IER)
CALL VMULFF (MY2 , IKY2 , 1 ,M,M , 1 ,M ,MKY2 , 1 , IER)

DO 120 I=1,N
DO 120 J=1,N

KXY 1(I,J)=KX1(I,J)- BKX 1 ( I , J

)

KXY2 ( I , J ) =KX2 ( I , J ) - BKX2 ( I , J

)

KXY1D(I,J)=KXY1(I,J)
KXY2D(I,J;=KXY2(I,J)

CONTINUE

CALL LINV2F (KXY1 ,N ,N , IKXY1 , IDGT , WKAREA , IER)
CALL LINV2F (KXY2 ,N , N , IKXY2 , IDGT , WKAREA , IER)

CALL DTERM
CALL DTERM

(N,KXY1D,DKXY1,N)
(N,KXY2D,DKXY2,N)

CALL VMULFF (IKXY1 ,BX1 ,N ,N , N ,N ,N , IBX1 , N , IER)
CALL VMULFF (IKXY2 ,BX2 , N ,N , N ,N ,N , IBX2 , N , IER)

CALL VMULFF (IKXY1 ,MB1X , N , N , 1 ,N ,N , IXB1 ,N , IER)
CALL VMULFF (IKXY2 ,MB2X , N ,N , 1 ,N , N , IXB2 , N , IER)

CALL VMULFM (BX1 , IKXY1 ,N ,N ,N , N ,N , BXI1 , N , IER)
CALL VMULFM (BX2 , IKXY2 ,N ,N , N ,N , N , BXI2 , N , IER)

CALL VMULFF (BXI1
CALL VMULFF (BXI2

CALL VMULFF (BXI1
CALL VMULFF (BXI2

CALL VMULFM (MB IX
CALL VMULFM (MB2X

CALL VMULFF (MBX1
CALL VMULFF (MBX2

CALL VMULFF (MBX1
CALL VMULFF (MBX2

BX1,N,N,N,N,N,BIX1,N,IER)
BX2,N,N,N,N,N,BIX2,N,IER)

MB1X,N,N,1,N,N,BIP1,N,IER)
MB2X,N,N,1,N,N,BIP2,N,IER)

IKXY1,N,1,N,N,N,MBX1,1,IER)
IKXY2 , N , 1 , N , N , N , MBX2 , 1 , IER

)

BX1,1,N,N,1,N,MIX1,1,IER)
BX2,1,N,N,1,N,MIX2,1,IER)

MB1X,1,N,1,1,N,MXM1,1,IER)
MB2X , 1 , N , 1 , 1 , N , MXM2 , 1 , IER

)

130

DO 130 1=1.

M

B4(I)=2.*(MKY1(I)-MKY2(I))
DO 130 J=1,M

A4(I. J)=IKY2(I. J)-IKY1(I, J)
SUM13^ = SUM13 +MY^ (I ) -IKY2 (I , J ) -MY2 ( J )

-MYl(I)-IKYl(I,J)"MYi(J)
CONTINUE

C4=SUM13+DL0G(DKY2/DKY1)
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DO 140 1=1,

N

B3 (I ) =BIP2 ( I ) +MIX2 ( I
) - IXB2 (I ) -MBX2 ( I

)

+ ™ -,/n ,
r(BIPl(l)+Mlil(l)-IXBl(l)-MB±l(I))

DO 140 J=1,N
A3(I,J) = IKXY2(I,J)-IBX2(I,J)

-BXI2tl J)+BIX2Tl J)
+ -7lKXYl(l,Jj-IBXl(l,J)
+ -bxii(i,j)+bixi(i,j5)

140 continue
c3=mxm2-mxm1+dl0g(dkxy2/dkxy1)

c

DO 150 1=1.

N

SUM12=SUM12+B3(I)*X(I)
DO 150 J=1,N

SUM11= SUM11+X ( I
) *A3 ( I , J ) *X ( J )

150 CONTINUE
RPX=0.5~(SUM11+SUM12+C3)

c

DO 160 1=1,

M

SUM15=SUM15+B4(I)*Y(I)
DO 160 J=1,M

SUM14= SUM14 + Y ( I
) *A4 ( I , J ) *Y ( J

)

160 CONTINUE
RY=0.5-(SUM14+SUM15+C4)

c
c

c
c

c
c

c
c

c
c

c
c

VA=RPX+RY

IF(VA.GT.T) THEN
CLA=1
NCLA1 =NCLA1+1

ELSE
CLA=2
NCLA2=NCLA2+1

END IF
c
c

200 DO 210 1=1,

N

XMX1(I)=X(I)-MX1(I)
XMX2lI)=X(I)-MX2(l5

210 CONTINUE

CALL VMULFF (BB1X ,XMX1 ,M,N , 1 ,M ,N ,BYT1 ,M, IER)
CALL VMULFF (BB2X ,XMX2 ,M,N , 1 ,M,N ,BYT2 ,M, IER)

DO 220 1=1,

M

MBT1(I)=MY1(I)+BYT1(I)
MBT2XI)=MY2(I) +BYT2(I)

220 CONTINUE

CALL VMULFF (IKYX1 ,MBT1 ,M,M, 1 ,M,M,KBT1 ,M, IER)
CALL VMULFF (IKYX2 ,MBT2 ,M,M, 1 ,M,M,KBT2 ,M, IER)

CALL VMULFM (MBT1 , IKYX1 ,M, 1 ,M,M,M,MBK1 , 1 , IER)
CALL VMULFM (MBT2 , IKYX2 ,M, 1 ,M,M,M,MBK2 , 1 , IER)

CALL VMULFF (MBK1 ,MBT1 , 1 ,M, 1 , 1 ,M ,MT1 , 1 , IER)
CALL VMULFF (MBK2 ,MBT2 , 1 ,M, 1 , 1 ,M,MT2 , 1 , IER)
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240

c
c

260

c
c

c
c

c

c298
c

c

c299
c
c
c
c
c
c
c
c
c
c
c
299

DO 240 1=1,

M

B5(I)=KBT1(I)+MBK1(I)- (KBT2 (I ) +MBK2 (I )

)

DO 240 5=1,

M

A5 ( I , J ) = IKYX2 ( I , J ) - IKYX 1 ( I , J

)

CONTINUE
C5=MT2-MT1+DL0G(DKYX2/DKYX1)

DO 260 1=1,

M

SUM25=SUM25+B5(I)*Y(I)
DO 260 J=1,M

SUM24=SUM24+Y ( I )*A5 (I , J
) *Y( J

)

CONTINUE
RBY=0.5~(SUM24+SUM25+C5)

V=RX+RBY

IF(V.GT.T) THEN
CL=1
NCL1=NCL1+1

ELSE
CL=2
NCL2=NCL2+1

END IF

WRITE(7,*) VAL,VA,V

WRITE(7.298) V, T. CLASS, CLA, CL
FORMAT (2X,E15.8,3x,F5.3,2X,3i7)

GO TO 45

RATEA1= 100 . -NCLASl/L
RATEA2=100. "NCLAS2/L
RATEB 1= 100 . *NCLA1 /

L

RATEB2= 100 . -NCLA2/L
RATEC1=100. *NCL1/L
RATEC2=100. -NCL2/L

WRITE (7,v
WRITE
WRITE
WRITE
STOP
END

L , NCLAS 1 , NCLA1 , NCL1
RATEAl , RATEB 1 . RATEC

1

L , NCLAS2 , NCLA2 , NCL2
RATEA2 , RATEB2 , RATEC2
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APPENDIX D

ANAL FORTRAN

c This program counts the number of correct decisions

c of three algorithms and calculates the correct

c decision rates of them

REAL* 8 T,PRW1,PRW2,
+ RATEA1.RATEA2,RATEB1.RATEB2,RATEC1,RATEC2,
+ VAL(12$),VA(128),V(128)

c
c

c
c

c
c

c
c

c

c
c

c
c

INTEGER I.J.L,
+ CLASS, CLA, CL,
+ NCLAS1,NCLA1,NCL1,
+ NCLAS2 , NCLA2 , NCL2

L=128

DO 10 1=1.

L

READ (2,*) VAL(I) ,VA(I) ,V(I)
10 CONTINUE

PRW1=0.005
20 PRW2=1.-PRW1

T=DL0G(PRW2/PRW1)

NCLAS1=0
NCLAS2=0
NCLA1=0
NCLA2=0
NCL1=0
NCL2=0

DO 30 I=1,L
if TvalTi) .GT.T) THEN

NCLAS1=NCLAS1+1
ELSE

CLASS =2
NCLAS2=NCLAS2+1

END IF

IF (VA(I).GT.T) THEN
CLA=1
NCLA1=NCLA1+1

ELSE
CLA=2
NCLA2=NCLA2+1

END IF

IF (V(I) .GT.T) THEN
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NCL1 =

ELSE
CL=2
NCL2 =

END IF

NCL1+1

NCL2+1

c
c
30
c

CONTINUE

c
RATEA1=100.
RATEA2=100.

-NCLASl/L
-NCLAS2/L

c
RATEB1=100.
RATEB2=100.

*NCLA1/L
*NCLA2/L

c
RATEC1=100.
RATEC2=100.

*NCL1/L
*NCL2/L

c
c WRITE (7,*) CLASS, CLA,CL
c
c WRITE (7,*) PRW1,PRW2,T,L
c
c WRITE (7,*) NCLAS1,NCLA1,NCL1
c

WRITE (7,*) RATEA1 , RATEB1 , RATEC1
c
c WRITE (7,*) NCLAS2,NCLA2,NCL2
c
c
c

WRITE (7,*) RATEA2 , RATEB2 , RATEC2

c

c
PRW1=PRW1+C .005

c
IF (PRW1.GE,.1.0) GO TO 299

c

c
GO TO 20

c
299 STOP

END
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APPENDIX E

GRAPH4 DATA

These data files show the correct decision rates

of 4 dimensional observation vectors. The first

data is ANAL11 which represents case 1 and class 1

results. The capital letters "A" and "B" represent

distributed decision rules A and B, and "C" means

the centralized decision rule.

The varying prior probability Pr(wl) is given in

the first column.
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A N A L 1 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0,.050 52 52 52 40,.625 40.625 40,,625
0,.100 62 64 63 48 .438 50.000 49,,219
0,,150 70 70 72 54,.688 54.688 56,,250
0,.200 77 75 79 60,.156 58.594 61.,719
0,.250 81 82 83 63 .281 64.063 64,,844
0,.300 88 91 89 68,.750 71.094 69,,531
0,.350 95 95 95 74,,219 74.219 74,,219
0,.400 99 98 100 77 ,344 76.563 78, , 125
0,.450 105 105 104 82,.031 82.031 81,,250
0,.500 110 110 109 85 .938 85.938 85, , 156
0,,550 110 110 112 85 .938 85.938 87,,500
0,.600 113 114 114 88 .281 89.063 89,,063
0,.650 115 115 116 89 .844 89.844 90,,625
0,.700 119 119 119 92 .969 92.969 92 ,969
.750 120 120 120 93 .750 93.750 93,,750
.800 122 121 121 95 .313 94.531 94,,531
.850 123 123 123 96 .094 96.094 96,,094
.900 124 125 124 96 .875 97.656 96 ,875
.950 125 125 126 97 .656 97.656 98,,438

A N A L 1 2

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0.,050 127 127 127 99. 219 99.,219 99.,219
0.,100 126 126 125 98,,438 98,,438 97,,656
0.,150 125 125 124 97,,656 97,,656 96,,875
0,,200 124 124 124 96, 875 96,,875 96,,875
0.,250 121 122 123 94,,531 95,,313 96,.094
0,,300 117 117 120 91,,406 91,,406 93,,750
0.,350 116 116 116 90,.625 90,.625 90,,625
0,,400 116 115 115 90,,625 89.,844 89,,844
0,,450 113 112 111 88,,281 87,,500 86,,719
0,,500 108 109 106 84,,375 85,,156 82,,813
0,,550 105 105 103 82.,031 82,,031 80,,469
0,,600 100 100 100 78,,125 78.,125 78,.125
,650 96 96 99 75,,000 75,,000 77 .344
,700 91 91 93 71,,094 71,,094 72 .656
,750 87 83 85 67,,969 64,,844 66 .406
.800 77 77 78 60,,156 60 ,156 60 .938
.850 70 72 70 54,.688 56,.250 54 .688
.900 65 63 66 50 .781 49,.219 51 .563
.950 57 57 61 44 .531 44 .531 47 .656
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A N A L 2 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0,.050 86 88 82 67,.188 68.750 64,.063
.100 104 100 91 81 .250 78.125 71..094
.150 108 104 102 84 .375 81.250 79,.688
.200 109 109 107 85 .156 85.156 83,.594
.250 110 112 111 85 .938 87.500 86,.719
.300 110 114 111 85 .938 89.063 86,.719
.350 113 114 113 88 .281 89.063 88,.281
.400 115 120 116 89 .844 93.750 90,.625

0,.450 117 120 118 91 ,406 93.750 92..188
0,.500 119 120 118 92,.969 93.750 92,.188
0,.550 119 120 119 92,,969 93.750 92,.969
0,,600 121 122 121 94 .531 95.313 94,.531
0,,650 123 123 123 96,.094 96.094 96,,094
0,,700 124 123 123 96,.875 96.094 96,,094
0.,750 124 123 124 96,.875 96.094 96,,875
0,,800 125 124 125 97,.656 96.875 97,,656
0,,850 125 124 127 97,,656 96.875 99,,219
0,,900 126 127 127 98,,438 99.219 99,,219
0.,950 127 127 128 99,,219 99.219 100,,000

A N A L 2 2

NO. o f correct
correct decision

' decisions rates (%)

Pr(wl) A B C A B C

0,.050 126 126 128 98,.438 98.438 100,,000
0,.100 123 122 126 96,.094 95.313 98,,438
.150 122 121 123 95,,313 94.531 96,,094

0,.200 119 119 120 92,,969 92.969 93,,750
0,.250 118 117 118 92,,188 91.406 92,,188
0,,300 116 117 117 90,,625 91.406 91.,406
0,.350 115 115 117 89,,844 89.844 91,,406
0,.400 114 113 115 89,,063 88.281 89,,844
.450 112 113 114 87,,500 88.281 89,,063
.500 109 110 114 85,,156 85.938 89,,063

0,.550 109 109 110 85,,156 85.156 85,,938
.600 107 108 107 83,,594 84.375 83,,594
.650 107 108 104 83,,594 84.375 81,,250
,700 102 103 104 79,,688 80.469 81.,250
.750 102 103 101 79,,688 80.469 78,,906
.800 101 98 96 78,,906 76.563 75.,000
.850 97 93 91 75,,781 72.656 71,,094
.900 88 91 83 68,,750 71.094 64,,844
.950 79 80 70 61,.719 62.500 54,,688

68



www.manaraa.com

ANAL3 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0..050 58 54 59 45,,313 42.188 46,,094
0.,100 69 67 68 53,.906 52.344 53,,125
0.,150 74 74 76 57,,813 57.813 59,,375
0.,200 77 76 77 60,,156 59.375 60, , 156
0,,250 83 83 85 64,.844 64.844 66,,406
0,,300 84 86 89 65,,625 67. 188 69 ,531
0.,350 86 87 95 67,,188 67.969 74,.219
0.,400 93 94 100 72,.656 73.438 78 .125
0.,450 99 102 106 77,.344 79.688 82,.813
0,,500 104 107 109 81,.250 83.594 85,.156
0.,550 109 109 112 85,.156 85.156 87 .500
0,,600 112 113 115 87,,500 88.281 89 .844
0,,650 114 114 116 89,.063 89.063 90 .625
0.,700 117 116 117 91,.406 90.625 91 .406
0.,750 118 117 120 92,.188 91.406 93 .750
0.,800 120 120 120 93 .750 93.750 93 .750
0,,850 122 121 122 95 .313 94.531 95 .313
0,,900 124 124 124 96,.875 96.875 96 .875
0,,950 126 126 126 98,.438 98.438 98 .438

A N A L 3 2

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0. 050 126 126 127 98,,438 98.438 99,,219
0. 100 125 125 125 97,,656 97.656 97,,656
0. 150 124 124 124 96,,875 96.875 96,,875
0.,200 122 122 124 95,,313 95.313 96,,875
0,,250 120 120 120 93,,750 93.750 93,,750
0.,300 117 117 117 91,,406 91.406 91,,406
0,,350 116 116 116 90,,625 90.625 90,,625
0,,400 115 115 114 89,,844 89.844 89,,063
0.,450 115 114 114 89,.844 89.063 89,.063
0.,500 110 111 110 85,,938 86.719 85 .938
0.,550 103 103 103 80,.469 80.469 80 ,469
0.,600 99 101 101 77 .344 78.906 78,.906
0,,650 97 96 98 75 .781 75.000 76,.563
0,.700 90 90 93 70 .313 70.313 72 .656
,750 88 89 88 68 .750 69.531 68 .750

0,.800 84 86 82 65 .625 67.188 64 .063
0,.850 79 80 75 61 .719 62.500 58 .594
.900 71 68 66 55 .469 53. 125 51 .563
.950 57 56 58 44 .531 43.750 45 .313
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A N A L 4 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B c

0..050 3 4 1 2,,344 3.125 0,,781
0,,100 9 8 2 7 ,031 6.250 1,,563
0,.150 16 14 3 12,,500 10.938 2,,344
0,,200 21 23 9 16 ,406 17.969 7,.031
0.,250 30 34 14 23,,438 26.563 10,.938
0,,300 43 44 22 33,.594 34.375 17,,188
0,,350 55 55 34 42,,969 42.969 26,.563
0,,400 70 71 48 54,,688 55.469 37,.500
0,,450 89 90 61 69 .531 70.313 47,.656
0,,500 110 112 73 85,.938 87.500 57,,031
0.,550 123 123 86 96,.094 96.094 67,,188
0,,600 127 127 109 99,.219 99.219 85,,156
0.,650 128 128 118 100,.000 100.000 92,.188
0,,700 128 128 125 100,.000 100.000 97,.656
0,,750 128 128 126 100,.000 100.000 98,,438
0,,800 128 128 128 100,.000 100.000 100,,000
0,,850 128 128 128 100,.000 100.000 100,,000
0.,900 128 128 128 100,.000 100.000 100,,000
0.,950 128 128 128 100,.000 100.000 100,,000

A N A L 4 2

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0.,050 128 128 128 100.000 100.000 100,,000
0.,100 127 125 128 99.219 97.656 100,.000
0.,150 125 125 128 97.656 97.656 100,.000
0,,200 122 122 128 95.313 95.313 100,.000
0,,250 114 116 127 89.063 90.625 99,.219
0,,300 109 106 125 85.156 82.813 97,.656
0,,350 96 95 122 75.000 74.219 95,.313
0,,400 79 78 114 61.719 60.938 89,.063
0,,450 49 47 98 38.281 36.719 76,.563
0,,500 25 22 77 19.531 17.188 60,.156
0,.550 10 11 62 7.813 8.594 48 .438
0,,600 3 3 39 2.344 2.344 30,.469
0,,650 1 23 0.781 0.000 17,.969
0,.700 13 0.000 0.000 10,.156
.750 10 0.000 0.000 7,.813
.800 4 0.000 0.000 3,.125
.850 3 0.000 0.000 2,.344
.900 1 0.000 0.000 0,.781
.950 1 0.000 0.000 0,.781
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APPENDIX F

GRAPH32 DATA

These data files show the correct decision rates

for 32 dimensional observation vectors. The first

data is ANAL11 which represents case 1 and class 1

results. The capital letters "A" and "B" represent

distributed decision rules A and B, and "C" means

the centralized decision rule.

The varying prior probability Pr(wl) is given in

the first column.
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A N A L 1 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B c

0,.050 128 128 128 100,.000 100.000 100,,000
0,.100 128 128 128 100,.000 100.000 100,,000
.150 128 128 128 100,,000 100.000 100,,000

0,.200 128 128 128 100,.000 100.000 100,,000
0,.250 128 128 128 100,.000 100.000 100,,000
0,.300 128 128 128 100,.000 100.000 100,,000
,350 128 128 128 100,,000 100.000 100,,000

0,.400 128 128 128 100,,000 100.000 100,,000
0,.450 128 128 128 100,,000 100.000 100,,000
0,.500 128 128 128 100,,000 100.000 100,,000
0,.550 128 128 128 100,,000 100.000 100,,000
0,.600 128 128 128 100,,000 100.000 100,,000
0,,650 128 128 128 100,,000 100.000 100,,000
0,.700 128 128 128 100,.000 100.000 100,,000
0,,750 128 128 128 100,,000 100.000 100,,000
0,.800 128 128 128 100,.000 100.000 100,,000
0,,850 128 128 128 100,.000 100.000 100,,000
0,.900 128 128 128 100,,000 100.000 100,,000
0,.950 128 128 128 100,,000 100.000 100,,000

A N A L 1 2

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B c

0.,050 128 128 128 100,.000 100.000 100,,000
0.,100 128 128 128 100,,000 100.000 100,,000
0,,150 128 128 128 100,,000 100.000 100,,000
0,,200 128 128 128 100,.000 100.000 100,,000
0,,250 128 128 128 100 .000 100.000 100,,000
0,,300 128 128 128 100,.000 100.000 100,,000
0,,350 128 128 128 100,.000 100.000 100,,000
0,,400 128 128 128 100,.000 100.000 100,.000
0,,450 128 128 128 100,.000 100.000 100,.000
0,,500 128 128 128 100,.000 100.000 100,.000
0,,550 128 128 128 100,.000 100.000 100,.000
0,.600 128 128 128 100,.000 100.000 100,.000
0,.650 128 128 128 100,.000 100.000 100,.000
.700 128 128 128 100 .000 100.000 100,.000
.750 128 128 128 100 .000 100.000 100,.000

0,.800 128 128 128 100 .000 100.000 100,.000
0,.850 128 128 128 100 .000 100.000 100,.000
.900 128 128 128 100 .000 100.000 100 .000
.950 128 128 128 100 .000 100.000 100,.000
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A N A L 2 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B c

0..050 128 128 128 100,,000 100.000 100,,000
0..100 128 128 128 100,,000 100.000 100,,000
0,,150 128 128 128 100,,000 100.000 100,,000
0,,200 128 128 128 100,,000 100.000 100,.000
0..250 128 128 128 100,.000 100.000 100 .000
0,,300 128 128 128 100,,000 100.000 100,.000
0,,350 128 128 128 100,.000 100.000 100,.000
0,,400 128 128 128 100,,000 100.000 100 .000
0.,450 128 128 128 100,,000 100.000 100 ,000
0.,500 128 128 128 100,,000 100.000 100,,000
0,,550 128 128 128 100,,000 100.000 100,,000
0,,600 128 128 128 100,,000 100.000 100 ,000
0,,650 128 128 128 100,,000 100.000 100 ,000
0,,700 128 128 128 100,,000 100.000 100 .000
0.,750 128 128 128 100,,000 100.000 100,.000
0.,800 128 128 128 100,,000 100.000 100,,000
0,,850 128 128 128 100,,000 100.000 100,.000
0.,900 128 128 128 100,,000 100.000 100 .000
0,,950 128 128 128 100,.000 100.000 100 .000

A N A L 2 2

Prfwl)
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950

NO. of
correct

decisions

A B
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128

128
128
128
128
128
128
128
128
128

c
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

A
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

correct
decision
rates (%)

B
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
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ANAL3 1

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B c

0.,050 128 128 128 100,.000 100.000 100.,000
0,,100 128 128 128 100,.000 100.000 100,,000
0,,150 128 128 128 100 .000 100.000 100,,000
0.,200 128 128 128 100 ,000 100.000 100,,000
0,,250 128 128 128 100,.000 100.000 100,,000
0,,300 128 128 128 100,.000 100.000 100,,000
0.,350 128 128 128 100,.000 100.000 100,,000
0,,400 128 128 128 100 .000 100.000 100,,000
0.,450 128 128 128 100 .000 100.000 100,,000
0,,500 128 128 128 100 .000 100.000 100,,000
0,,550 128 128 128 100 .000 100.000 100,,000
0.,600 128 128 128 100 .000 100.000 100,,000
0.,650 128 128 128 100 .000 100.000 100,,000
0,,700 128 128 128 100 .000 100.000 100,,000
0,,750 128 128 128 100 .000 100.000 100,,000
0.,800 128 128 128 100 .000 100.000 100,,000
0,,850 128 128 128 100 .000 100.000 100,,000
0,,900 128 128 128 100 .000 100.000 100,.000
0,,950 128 128 128 100 .000 100.000 100,.000

A N A L 3 2

NO. o f correct
correct decision

decisions rates (%)

Pr(wl) A B C A B C

0.,050 128 128 128 100,.000 100.000 100,.000
0,,100 128 128 128 100 .000 100.000 100,,000
0,,150 128 128 128 100,.000 100.000 100,,000
0.,200 128 128 128 100,.000 100.000 100,,000
0.,250 128 128 128 100,.000 100.000 100,.000
0.,300 128 128 128 100 .000 100.000 100,,000
0,,350 128 128 128 100 .000 100.000 100,.000
0,,400 128 128 128 100,.000 100.000 100,.000
0,,450 128 128 128 100 .000 100.000 100,.000
0,.500 127 127 120 99 .219 99.219 93,.750
0,.550 127 127 120 99 .219 99.219 93,.750
0,.600 127 127 120 99 .219 99.219 93,.750
0,.650 127 127 120 99 .219 99.219 93,.750
0,.700 127 127 120 99 .219 99.219 93,.750
0,.750 127 127 120 99 .219 99.219 93,.750
0,.800 127 127 120 99 .219 99.219 93 ,750
.850 127 127 120 99 .219 99.219 93,.750
.900 127 127 120 99 .219 99.219 93,.750
.950 127 127 120 99 .219 99.219 93 .750
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A N A L 4 1

Pr(wl)

0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950

NO. of
correct

decisions

103
116
121
125
125
125
127
127
127
128
128
128
128
128
128
128
128
128
128

B

108
119
123
124
126
126
126
126
128
128
128
128
128
128
128
128
128
128
128

69
83
87
92
96

101
106
108
111
113
113
114
117
120
122
124
125
127
127

80 .469 84
90 .625 92
94 .531 96
97 .656 96
97 .656 98
97 .656 98
99 .219 98
99 .219 98,
99 .219 100.

100,,000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.
100. 000 100.

correct
decision
rates(%)

B

.375

.969

.094

.875

.438

.438

.438

.438

.000
,000
000
000
000
000
000
000
000
000
000

53
64
67
71
75
78
82
84
86
88,
88.
89.
91.
93.
95.
96.
97.
99.
99.

.906

.844

.969

.875

.000
,906
813
375
719
281
281
063
406
750
313
875
656
219
219

A N A L 4 2

Pr(wl)

0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950

NO. <Df
1correct

discisions

A B C

101 87 127
77 69 125
63 56 124
55 50 123
46 43 122
36 33 122
29 26 121
25 21 120
21 11 119
17 8 117
12 8 116
7 7 114
5 7 112
4 3 112
3 3 105
2 1 100
1 93

87
71

78.906
60.156
49.219
42.969
35.938
28. 125
22.656
19.531
16.406
13.281
9.375

469
906
125
344
563
781

0.000
0.000

5
3
3
2
1

correct
decision
rates(%)

67
53
43
39
33
25
20
16
8
6,
6,
5.
5.
2.
2.
0.
0.
0.
0.

B

.969

.906

.750

.063

.594
,781
313
406
594
250
250
469
469
344
344
781
000
000
000

99
97
96
96
95
95
94
93
92
91
90,
89.
87.
87.
82.
78.
72.
67.
55.

.219

.656

.875

.094

.313

.313
,531
750
969
406
625
063
500
500
031
125
656
969
469
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