

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943-5008

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

ANALYSIS OF A DISTRIBUTED DECISION ALGORITHM

by

Sung Chu Hahn

December 1985

Thesis Advisor:

C. W. Therrien

Approved for public release; distribution is unlimited

ITY CLASSIFICATION OF THIS PAGE

ofessor C. Therrien

FORM 1473, 84 MAR

	REPORT DOCU	MENTATION	PAGE	-						
PORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKINGS							
NCLASSIFIED										
CURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	I / AVAILABILITY	OF REPO	Apr Apr	proved for				
	1.0	public re	elease; d	istri	butic	on is				
ECLASSIFICATION / DOWNGRADING SCHEDU	LE	unlimited	l							
FORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)								
AME OF PERFORMING ORGANIZATION al Postgraduate School	6b. OFFICE SYMBOL (If applicable) 62	7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School								
Dasse (City State and ZIR Code)		7h ADDRESS (Ci	ty State, and Z	IP Code)						
iterey, California 939	43-5100	Monterey	7, Califo	rnia	9394	43-5100				
AME OF FUNDING/SPONSORING RGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	CUREMENT INSTRUMENT IDENTIFICATION NUMBER							
DRESS (City State and 7/R Code)		10 SOURCE OF	FUNDING NUMB	BERS						
joness (eng, state, and en code)		PROGRAM ELEMENT NO	PROJECT NO	TASK		WORK UNIT				
LYSIS OF A DISTRIBUTIO RSONAL AUTHOR(S) Hahn, Sung Chu	N DECISION AI	LGORITHM								
TYPE OF REPORT 136. TIME C	OVERED TO	14 DATE OF REPO 1985 Dec	ORT (Year, Mont cember	th, Day)	15 PAG	E COUNT				
JPPLEMENTARY NOTATION										
COSATI CODES	18. SUBJECT TERMS	(Continue on rever	se if necessary a	and iden	tify by b	lock number)				
ELD GROUP SUB-GROUP	Centralize	d Decision	Algorith	; Dis	strib	uted				
	Decision A	lgorithm A	; Distrib	uted	Deci	sion				
	Algorithm	В								
Distributed decision I their associated comp Distributed a commonly rget detection and class aracterized by a limite tween the sensors. This thesis develops Distributed by a limite tween the sensors it algorithm. Analysis	problems arian uters must we observed even sification. d bandwidth and evaluate to a non-dis of the algor	se wheneve: ork cooper: ent. Typic The proble of the com s an algor tributed o ithm is ca	r two or atively t cal examp em is usu municatio ithm for r central rried out	more o mal oles ally on li dist ized for	sens ke a are i nk ribut form some	ors n ed of				
		21 ABSTRACT S	ECURITY CLASSI	IFICATIO	J					
NAME OF RESPONSIBLE INDIVIDUAL	DIC USER	225 TELEPHONE	(Include Area Co	ode) 22	C. OFFICE	SYMBOL				
MAINE OF RESPONSIBLE INDIVIDUAL					00					

408 646-2160

62Ti

SECURITY CLASSIFICATION OF THIS PAGE

low-dimensional cases. Computer simulations were carried out for higher dimensional cases. The simulation work was done in Fortran under CMS on an IBM 370/3033 computer. Approved for public release; distribution is unlimited.

Analysis of a Distributed Decision Algorithm

by

Sung Chu Hahn Major, R.O.K. "Air Force B.S., R.O.K. Air Force Academy, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1985

ABSTRACT

10:

Distributed decision problems arise whenever two or more sensors and their associated computers must work cooperatively to make a decision about a commonly observed event. Typical examples are in target detection and classification. The problem is usually characterized by a limited bandwidth of the communication link between the sensors.

This thesis develops and evaluates an algorithm for distributed decision and compares it to a non-distributed or centralized form of the algorithm. Analysis of the algorithm is carried out for some low-dimensional cases. Computer simulations were carried out for higher dimensional cases. The simulation work was done in Fortran under CMS on • an IBM 370/3033 computer.

TABLE OF CONTENTS

I.	INT	RODUCTION	9
	Α.	GENERAL DISCUSSION	9
	в.	BACKGROUND	9
	C.	STRUCTURE OF THE THESIS	10
II.	BAS	IC DECISION PROCESSES	11
	Α.	CLASS DECISION	11
	в.	THE GAUSSIAN DISTRIBUTION FOR RANDOM	13
	C.	BAYES'S THEOREM	16
	D.	DECISION BOUNDARY OF CENTRALIZED DECISION	
	2.	RULE	18
III.	DIS	TRIBUTED DECISION RULE	21
	Α.	BACKGROUND	21
	в.	DEFINITION	22
	,	1. Centralized Decision Algorithm	22
		2. Separation of Centralized Decision Algorithm into x _o and y _o Observation Vector Components	23
		3. Distributed Decision Rule A	27
		4. Distributed Decision Rule B	31
	C.	COMPARISON WITH THE CENTRALIZED DECISION RULE	33
IV.	SIM	ULATION	37
	Α.	RANDOM VECTOR GENERATION	37
	в.	GENERATION OF STATISTICS OF RANDOM VECTORS	38
	С.	CLASSIFICATION PROGRAM	40
	D.	CLASSIFICATION EXPERIMENTS	41
۷.	CON	CLUSIONS	51

APPENDIX A	GEN FORT	'RAN .	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	52
APPENDIX B	: STAT FOR	TRAN .		•	•	•		•	•	•	•	•	•	•	•	•	53
APPENDIX C	: DECAL FC	RTRAN	•	•	•	•		•	•	•	•	•	•	•	•	•	55
APPENDIX D	: ANAL FOR	TRAN .	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	64
APPENDIX E	: GRAPH4 D	DATA .	٠	٠	•	•	• •	•	•	•	•	•	•	•	•	•	66
APPENDIX F	GRAPH32	DATA .	٠	•	•	•	• •	•	•	•	•	•	•	•	•	•	71
LIST OF RE	FERENCES .	•••	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	76
INITIAL DIS	STRIBUTION	LIST .	•			•				•		•					77

LIST OF TABLES

1.	DIFFERENCES AMONG THREE ALGORITHMS	•	35
2.	DIFFERENT VECTORS IN ALGORITHMS		36
3.	PARAMETERS IN DIFFERENCE EQUATIONS		42
4.	CORRECT DECISION RATE(%) 4-DIMENSIONAL 128 VECTORS		43
5.	CORRECT DECISION RATE(%) 32-DIMENSIONAL 128		44

LIST OF FIGURES

2.1	Basic Class Decision Procedure	•	•	11
2.2	(a) A Waveform to be Recognized (b) Observation Vector (c) Depiction of Observation Space			12
2.3	One Dimensional Gaussian Density Function	•		14
2.4	Two-Dimensional Gaussian Density Function	•		15
2.5	Decision Boundary of One-Dimensional Case	•		18
2.6	Decision Boundary of Two-Dimensional Case (Hyperbola)			19
3.1	Distributed Decision Scenario	•		21
3.2	Centralized Decision Scenario	•		24
3.3	Block Diagram of Distributed Decision Algorithms (a) Type A(D.D.A) (b) Type B(D.D.B)			30
4.1	Aircraft Type Detection and Observation Vectors	•		41
4.2	Operating Characteristics Graph of Test Case 1(4-Dimensional Vectors)	•		46
4.3	Operating Characteristics Graph of Test Case 2(4-Dimensional Vectors)	•		47
4.4	Operating Characteristics Graph of Test Case 3(4-Dimensional Vectors)	•		48
4.5	Operating Characteristics Graph of Test Case 4(4-Dimensional Vectors)	•		49
4.6	Operating Characteristics Graph of Test Case 4(32-Dimensional vectors)	•	•	50

I. INTRODUCTION

A. GENERAL DISCUSSION

This thesis algorithm for distributed presents an decision and compares performance its to that of а centralized decision rule. A distributed decision rule is characterized by the fact that a decision algorithm is distributed between processors of two or more sensors.

For simulation and evaluation, some programs were written in Fortran on an IBM 770/3033 computer. The work of this thesis is concerned with the analysis of the distributed decision rule only. A related thesis by Capt. Mark Schon [Ref. 1] is concerned with the implementation in real time on a distributed microcomputer system.

The specific goals of this thesis are to :

- 1 Develop and analyze a specific distributed decision algorithm.
- 2 Generate all necessary data, parameters and statistics to simulate the decision algorithms.
- 3 Experimentally evaluate the capabilities and performance of a distributed decision rule and compare it with a centralized decision rule.

B. BACKGROUND

In this thesis statistical methods are used to develop decision algorithms. Since we deal with many observations which represent data collected by the sensors, vector notation and matrix algebra is used extensively in these algorithms.

The Gaussian distribution is used to characterize the observations because this provides a decision rule that is relatively easy to analyze and develop intuition. It also provides a reasonable decision rule based on second moment statistics (mean and covariance) of the observation data.

9

Bayes's rule is used to develop decision algorithms for binary decision (class 1 or class 2) and to develop the decision boundary concept. Mathematical manipulation of Bayes's rule leads to specific decision algorithms which are analyzed and evaluated in the computer simulation.

Since it is very difficult to visualize decision boundaries in high dimensional spaces, we have developed some computer programs to experimentally evaluate the algorithms. The simulations show that in many cases the distributed decision algorithms are quite reliable and perform nearly as well as a centralized decision algorithm.

C. STRUCTURE OF THE THESIS

The remainder of this thesis is structured as follows. Chapter II addresses the overall processes of the decision rule including probability laws for random vectors and Bayes decision theory. The matrix algebra needed to describe this is also developed. Decision rules are interpreted as providing boundaries and regions in a multidimensional space that determine decisions made about the observed data.

Chapter III describes a distributed decision algorithm and the form of its decision boundary. Detailed analysis and evaluation are given comparing it with the centralized decision rule.

Chapter IV presents computer simulations to test the distributed decision rules. To simulate data collected by sensors, an autoregressive time series model is introduced. Second moment statistics i.e. the mean, variance and covariance of the given random vectors are computed by a statistical estimation algorithm. These statistics are further used to compute the algorithm parameters. Decision algorithms are tested with the generated data and results are given.

Chapter V summarizes the results of the thesis and describes the capabilities and performance of the decision algorithms. Suggestions are also given for future research.

10

II. BASIC DECISION PROCESSES

A. CLASS DECISION

Class decision means a classification of objects into categories. The objects of interest may be radar targets, electronic waveforms or signals, printed letters or characters, states of a system, or any number of other things that are desired to be classified.

Figure 2.1 Basic Class Decision Procedure

In testing a class decision algorithm the individual classes of objects are presumed already known. The basic procedure for a class decision is illustrated in Fig. 2.1. A portion of a known set of labeled objects is extracted and used to derive a classification algorithm. These objects comprise the "training set".

Figure 2.2 (a) A Waveform to be Recognized (b) Observation Vector (c) Depiction of Observation Space

The remaining objects are then used to test the classification algorithm and these are collectively referred to as the "test set". The performance of the algorithm can be evaluated because the correct classes of the individual objects in the test set are known. The result of classification is supervised by a teacher who may dictate suitable modifications to the algorithm.

A simple example of a class decision is presented to illustrate its approach and to define some relevant concepts. Fig. 2.2(a) illustrates 32-dimensional observations of electronic waveforms. The vector \underline{x}_0 is called the observation vector and the multidimensional space in which it resides is called the observation space. These are depicted in Fig. 2.2(b) and (c).

Every problem in class decision has at least two things in common. First, an exact description of the various classes of objects cannot be obtained. Thus the class decision is inherently a probabilistic topic. Secondly, the objects are represented by vectors in a multidimensional space. Thus the observation vectors of the objects to be classified are multidimensional random vectors which must be described in a statistical sense. Similarly, the performance of the algorithm must also be measured in a statistical sense. Thus an adequate background in probability and statistics is important for these problems.

B. THE GAUSSIAN DISTRIBUTION FOR RANDOM VECTORS

In engineering and many other areas, the Gaussian distribution is frequently encountered. It describes certain phenomena well with just two parameters, namely the mean and the covariance of the random variables. The Gaussian density function for one-dimensional random variables is:

$$p_{z}(x) = \frac{1}{\sqrt{2\pi\sigma_{z}}} \exp \left[-\frac{1}{2} \frac{(x - m_{z})^{2}}{\sigma_{z}^{2}}\right]$$
(2.1)

13

Fig. 2.3 shows a one-dimensional density function $p_x(x)$ with its mean value m_x and variance σ_x^2 .

In the two-dimensional case (i.e. two random variables) the Gaussian density function is:

$$p_{x,y}(x,y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho^{2}}} \exp\left[\frac{1}{2(1-\rho^{2})} \left\{\frac{(x-m_{z})^{2}}{\sigma_{z}^{2}} + 2\rho\frac{(x-m_{z})(y-m_{y})}{\sigma_{z}\sigma_{y}} + \frac{(y-m_{y})^{2}}{\sigma_{y}^{2}}\right\}\right]$$
(2.2)

Fig. 2.4 shows a two-dimensional density function $p_{x,y}(x,y)$ with its mean values m_x and m_y , its variances σ_x^2 and σ_y^2 and the correlation coefficient ρ of both random variables x and y [Ref. 2: p. 158].

Figure 2.4 Two-Dimensional Gaussian Density Function

The Gaussian density function for two sets of multidimensional random variables \underline{x} and \underline{y} is expressed by the combined vector \underline{z} and its parameters as follows:

$$p_{\underline{z}}(\underline{z}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\underline{z}-\underline{m})^{T}\mathbf{K}^{-1}(\underline{z}-\underline{m})\right]$$
(2.3)

where

$$\underline{z} = \begin{bmatrix} \underline{x} \\ \underline{y} \end{bmatrix}, \quad \underline{m}^{(i)} = \begin{bmatrix} \underline{m}_{x}^{(i)} \\ \underline{m}_{y}^{(i)} \end{bmatrix}, \quad \mathbf{K}^{(i)} = \begin{bmatrix} \mathbf{K}_{x}^{(i)} & \mathbf{B}_{xy}^{(i)} \\ \mathbf{B}_{xy}^{(i)T} & \mathbf{K}_{y}^{(i)} \end{bmatrix}, \quad i = 1, 2$$
(2.4)

Observation vectors \underline{x} and \underline{y} are N and M-dimensional respectively. The mean vectors \underline{m}_x and \underline{m}_y are also N and M dimensional, and they represent the expectations of vectors i.e. $\underline{m}_x = E[(\underline{x})]$ and $\underline{m}_y = E[(\underline{y})]$. The covariance matrices $[K_x]$ and $[K_y]$ are of size [N X N] and [M x M] respectively and represent correlations among the components of \underline{x} and \underline{y} . The matrix $[B_{xy}]$ is of size [N x M] and represents cross correlation between the components of the vectors \underline{x} and \underline{y} . These matrices are also defined by expectations of vectors i.e. $K_x = E[(\underline{x}-\underline{m}_x)(\underline{x}-\underline{m}_x)^T]$, $K_y = E[(\underline{y}-\underline{m}_y)(\underline{y}-\underline{m}_y)^T]$, and $B_{xy} = E[(\underline{x}-\underline{m}_x)(\underline{y}-\underline{m}_y)^T]$.

C. BAYES'S THEOREM

Bayes's theorem is used to convert prior probabilities into posterior probabilities. The form of this theorem that is useful to us is:

$$p_{r}(\omega | \underline{x}) = \frac{p(\underline{x} | \omega) p_{r}(\omega)}{p(\underline{x})}$$
(2.5)

where ω represents an event such as "object belongs to class l". The term $p_r(\omega)$ is called the prior probability of the event and the term $p_r(\omega | \underline{x})$ is called the posterior probability. More generally, let ω_1 , ω_2 ,, ω_n be n mutually exclusive classes exhausting the set of all possible classes of the objects. Then the conditional probability law gives this following equation:

$$p_r(\omega_i | \underline{x}) = \frac{p(\underline{x} | \omega_i) p_r(\omega_i)}{p(\underline{x})}, \quad i = 1, 2, \dots, n \quad (2.6)$$

where $p(x) = \sum_{i=1}^{n} p(x|\omega_i)P_r(\omega_i)$. If we consider the case where observations consist of two vectors <u>x</u> and <u>y</u> and assume that there are only two classes, class $l(\omega_1)$ and class $2(\omega_2)$, the above equation becomes:

$$p_r(\omega_i | \underline{x}, \underline{y}) = \frac{p_{\underline{x}, \underline{y}} | \omega_i(\underline{x}, \underline{y} | \omega_i) p_r(\omega_i)}{p_{\underline{x}, \underline{y}}(\underline{x}, \underline{y})}, \quad i = 1, 2$$
(2.7)

If we make a class decision based on the posterior probabilities, that is

$$p_{r}\left(\left|\omega_{1}\right| | \underline{x}, \underline{y}\right) \stackrel{\omega_{1}}{\underset{\omega_{2}}{\overset{>}{\leq}} p_{r}\left(\left|\omega_{2}\right| | \underline{x}, \underline{y}\right)$$
(2.8)

then Eqs. 2.7 and 2.8 lead to the likelihood ratio test

$$l\left(\underline{x},\underline{y}\right) = \frac{p_1(\underline{x},\underline{y})}{p_2(\underline{x},\underline{y})} \stackrel{\omega_1}{\underset{\omega_2}{\overset{\omega_1}{\overset{\omega_2}{\overset{\omega_1}{\overset{\omega_2}{\overset{\omega_{\omega}{\overset{\omega_2}{\overset{\omega_{2}{\overset{\omega_2}{\overset{\omega_2}{\overset{\omega_{2}{\overset{\omega_2}{\overset{$$

where we have used the notation $p_i(\underline{x},\underline{y})$ to represent the class conditional density $p(\underline{x},\underline{y}|\omega_i)$. If the likelihood

ratio l(x,y) for specific observation vectors <u>x</u> and <u>y</u> is greater than a threshold value T then class $l(\omega_1)$ is chosen. On the other hand if the ratio is less than T class $2(\omega_2)$ is chosen.

D. DECISION BOUNDARY OF CENTRALIZED DECISION RULE

Although any decision rule for our problem is at least two-dimensional, corresponding to observations x and y, it is still instructive to look at the likelihood ratio for a single variable x. The decision boundary of a one-dimensional case is relatively simple as Fig. 2.5 shows.

Figure 2.5 Decision Boundary of One-Dimensional Case The decision boundary is just given as a set of points on the x axis. In the two-dimensional case the decision boundary is more complicated. For Gaussian random vectors it could be a straight line, ellipse, hyperbola, parabola or a combination.

Figure 2.6 Decision Boundary of Two-Dimensional Case (Hyperbola)

Fig. 2.6 shows an example, if observation variables x and y are outside the curve lines i.e. in region $l(R_1)$ the decision is class 1, if inside i.e. in region $2(R_2)$ the decision is class 2.

When the dimension of the observations is more than two, it is more difficult to visualize the decision boundary but the concept is still useful. A centralized decision rule uses the x and y vectors together directly in its algorithm. All equations use joint probability densities such as $p_1(\underline{x},\underline{y})$, $p_2(\underline{x},\underline{y})$ which determine the multidimensional decision boundary.

III. DISTRIBUTED DECISION RULE

A. BACKGROUND

The AEGIS weapons system simulation project, currently being conducted at the Naval Postgraduate School, is attempting to determine the feasibility of replacing the larger and relatively expensive mainframe computer, the AN/UYK-7, with a system of 16 or 32 bit VLSI computers [Ref. 3].

Figure 3.1 Distributed Decision Scenario

As the capabilities and performance of microcomputers continue to improve, it is becoming apparent that an integrated multiprocessor system of less expensive, compact microcomputers can manage many real-time applications that have previously used mainframe computers. This set of microcomputers has been used to demonstrate our distributed decision rule in a realistic environment[Ref. 1]. The computers have been organized to simulate two sensors observing the same object for purposes of detection and/or classification.

As illustrated in Fig. 3.1, sensor A deals with the observation vector \underline{x}_0 only, while sensor B deals with the observation vector \underline{y}_0 exclusively. A centralized decision rule uses both observation vectors \underline{x}_0 and \underline{y}_0 at once in a single processor to determine its decision. In a distributed decision procedure, each processor cannot use both vectors together because of the limited bandwidth communication. Nevertheless, by exchange of some minimum essential information, each processor makes a decision which is quite reliable. The concepts will be developed mathematically in this chapter and tested experimentally in the following chapter.

B. DEFINITION

In order to introduce the concepts of three decision algorithms here each algorithm is presented mathematically.

These algorithms are:

- 1 Centralized Decision Algorithm (C.D.A)
- 2 Distributed Decision Algorithm A (D.D.A)
- 3 Distributed Decision Algorithm B (D.D.B)

1. Centralized Decision Algorithm

The concept of a likelihood ratio was introduced in Chapter 2 Section C. From the likelihood ratio the centralized decision rule is derived. The likelihood ratio for Gaussian data is expressed (using Eq. 2.3 and Eq. 2.9) as follows:

$$l\left(\underline{z}\right) = \frac{p_{1}(\underline{z})}{p_{2}(\underline{z})} =$$

$$|\mathbf{K}^{(1)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\underline{z}-\underline{m}^{(1)}\right)^{T} K^{(1)^{-1}}(\underline{z}-\underline{m}^{(1)})\right]$$

$$|\mathbf{K}^{(2)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\underline{z}-\underline{m}^{(2)}\right)^{T} K^{(2)^{-1}}(\underline{z}-\underline{m}^{(2)})\right] \qquad (3.1)$$

$$\overset{\omega_{1}}{\underset{\omega_{2}}{\overset{\omega_{1}}{\overset{\omega_{1}}{p_{r}}(\omega_{1})}} = T$$

where vector \underline{z} , $\underline{m}^{(i)}$, and matrix $[K^{(i)}]$ were introduced in Eq. 2.4. Here the subscript 1 and 2 means class 1 and class 2 respectively in the two class case. Taking the natural logarithm of both sides of Eq. 3.1 yields this following centralized decision algorithm:

$$\frac{1}{2} \left[\left(\underline{z} - \underline{m}^{(2)} \right)^T K^{(2)^{-1}} \left(\underline{z} - \underline{m}^{(2)} \right) \right]$$
(3.2)

$$-(\underline{z} - \underline{m}^{(1)})^T K^{(1)^{-1}}(\underline{z} - \underline{m}^{(1)}) + \ln \frac{|\mathbf{K}^{(2)}|}{|\mathbf{K}^{(1)}|} \bigg| \stackrel{>}{\underset{\omega_2}{\overset{\leq}{\sim}}} \ln T$$

Such a centralized decision procedure is shown in Fig. 3.2.

2. <u>Separation of Centralized Decision Algorithm into x</u> and y Observation Vector Components

Although Eq. 3.2 adequately represents the centralized decision rule, we want to put it in a form involving vectors \underline{x}_0 , \underline{y}_0 separately and certain partitions of the matrices $K^{(1)}$, $K^{(2)}$, $\underline{m}^{(1)}$, and $\underline{m}^{(2)}$ for the two classes. This will help us to develop the distributed decision rules and enable us to more directly compare the distributed rules to the centralized rule. Fig. 3.2 shows a scenario using both observation vectors in a centralized processor. To develop a distributed form of the decision algorithm, we proceed as follows. Using a conditional probability law the joint probability $p(\underline{x}, \underline{y})$ is equivalent to:

$$p_i\left(\underline{x},\underline{y}\right) = p_i\left(\underline{x}\right) p_i\left(\underline{y} \mid \underline{x}\right), \quad i = 1,2$$
(3.3)

Figure 3.2 Centralized Decision Scenario Taking the log base e of both sides leads to:

$$\ln p_i(\underline{x},\underline{y}) = \ln p_i(\underline{x}) + \ln p_i(\underline{y}|\underline{x}), \quad i = 1,2$$
(3.4)

Eq. 3.4 shows how the probability density can be distributed into two parts, where one part is a function of \underline{x} only and the other part is a function of \underline{y} given \underline{x} . For the Gaussian case the probability density function of random vector \underline{x} is:

$$p_{i}(\underline{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}_{x}^{(i)}|^{\frac{1}{2}}}$$

$$\exp\left[-\frac{1}{2} [\underline{x} - \underline{m}_{x}^{(i)}]^{T} [K_{x}^{(i)}]^{-1} [\underline{x} - \underline{m}_{x}^{(i)}]\right], \quad i = 1, 2$$
(3.5)

The conditional probability density function of vector \underline{y} given \underline{x} [Ref. 2] is:

$$p_{i}\left(\underline{y} \mid \underline{x}\right) = \frac{1}{\left(2\pi\right)^{\frac{N}{2}} \mid \mathbf{K}_{y}^{\left(i\right)}_{\parallel x} \mid^{\frac{1}{2}}}$$

$$\exp\left[-\frac{1}{2}\left[\underline{y} - \underline{m}_{y}^{\left(i\right)}_{\parallel x}\right]^{T}\left[K_{y}^{\left(i\right)}_{\parallel x}\right]^{-1}\left[\underline{y} - \underline{m}_{y}^{\left(i\right)}_{\parallel x}\right]\right], \quad i = 1, 2$$

$$(3.6)$$

where

$$\mathbf{K}_{y|z}^{(i)} = \mathbf{K}_{y}^{(i)} - \mathbf{B}_{zy}^{(i)T} [\mathbf{K}_{z}^{(i)}]^{-1} \mathbf{B}_{zy}^{(i)}, \quad i = 1, 2$$
(3.7)

and

$$\underline{m}_{y}{}^{(i)}_{|z} = \underline{m}_{y}{}^{(i)} + [\mathbf{B}_{xy}{}^{(i)}]^{T} [\mathbf{K}_{x}{}^{(i)}]^{-1} [\underline{x} - \underline{m}_{x}{}^{(i)}], \quad i = 1, 2$$
(3.8)

In Eqs. 3.7 and 3.8, $[K_{y|x}]$ and $\underline{m}_{y|x}$ is easily calculated using all parameters and both observation vectors y_0 and x_0 directly. Thus the conditional probability density function p(y|x) is determined without any difficulties. Using the above expressions Eqs. 3.5 and 3.6, Eq. 3.1 becomes:

$$\frac{p_{1}(\underline{x},\underline{y})}{p_{2}(\underline{x},\underline{y})} = \frac{p_{1}(\underline{x}) p_{1}(\underline{y} | \underline{x})}{p_{2}(\underline{x}) p_{2}(\underline{y} | \underline{x})}$$

$$= \frac{|\mathbf{K}_{z}^{(1)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} [\underline{x} - \underline{m}_{z}^{(1)}]^{T} [\mathbf{K}_{z}^{(1)}]^{-1} [\underline{x} - \underline{m}_{z}^{(1)}]\right]}{|\mathbf{K}_{z}^{(2)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} [\underline{x} - \underline{m}_{z}^{(2)}]^{T} [\mathbf{K}_{z}^{(2)}]^{-1} [\underline{x} - \underline{m}_{z}^{(2)}]\right]}$$

$$= \frac{|\mathbf{K}_{y}^{(1)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} [\underline{y} - \underline{m}_{y}^{(1)}]^{T} [\mathbf{K}_{y}^{(1)}]^{-1} [\underline{y} - \underline{m}_{y}^{(1)}]^{T}\right]}{|\mathbf{K}_{y}^{(2)}|^{z}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} [\underline{y} - \underline{m}_{y}^{(2)}]^{T} [\mathbf{K}_{y}^{(2)}]^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}\right]}$$

$$= \frac{|\mathbf{K}_{y}^{(2)}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} [\underline{y} - \underline{m}_{y}^{(2)}]^{T} [\mathbf{K}_{y}^{(2)}]^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}\right]}{|\mathbf{K}_{y}^{(2)}|^{z}|^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}} \left[\frac{1}{2} [\underline{y} - \underline{m}_{y}^{(2)}]^{T} [\mathbf{K}_{y}^{(2)}]^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}}\right]}{|\mathbf{K}_{y}^{(2)}|^{z}|^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}} \left[\frac{1}{2} [\underline{y} - \underline{m}_{y}^{(2)}]^{T} [\mathbf{K}_{y}^{(2)}]^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}}\right]}{|\mathbf{K}_{y}^{(2)}|^{z}|^{-1} [\underline{y} - \underline{m}_{y}^{(2)}]^{T}}\right]}$$

Finally by taking the natural logarithm of both sides, Eq. 3.9 becomes:

$$\lambda_{A} (\underline{x}_{0}) + \lambda_{B} (\underline{y}_{0} | \underline{x}_{0}) \stackrel{\omega_{1}}{\underset{\omega_{2}}{\overset{\sim}{\leq}} \ln T$$
(3.10)

where

$$\lambda_{A} (\underline{x}_{0}) = \frac{1}{2} \left[[\underline{x}_{0} - \underline{m}_{z}^{(2)}]^{T} [\mathbf{K}_{z}^{(2)}]^{-1} [\underline{x}_{0} - \underline{m}_{z}^{(2)}] - [\underline{x}_{0} - \underline{m}_{z}^{(2)}] - [\underline{x}_{0} - \underline{m}_{z}^{(1)}]^{T} [\mathbf{K}_{z}^{(1)}]^{-1} [\underline{x}_{0} - \underline{m}_{z}^{(1)}] + \ln \frac{|\mathbf{K}_{z}^{(2)}|}{|\mathbf{K}_{z}^{(1)}|} \right]$$
(3.11)

$$\lambda_{B} (\underline{y}_{0} | \underline{x}_{0}) = \frac{1}{2} \left[\underbrace{[\underline{y}_{0} - \underline{m}_{y}]_{x}^{(2)}]^{T}}_{\left[\mathbf{K}_{y}^{(2)}\right]^{-1}} \underbrace{[\underline{y}_{0} - \underline{m}_{y}]_{x}^{(2)}}_{\left[\underline{y}_{0} - \underline{m}_{y}\right]_{x}^{(2)}} - \underbrace{[\underline{y}_{0} - \underline{m}_{y}]_{x}^{(1)}]^{T}}_{\left[\mathbf{K}_{y}^{(1)}\right]_{x}^{-1}} \underbrace{[\underline{y}_{0} - \underline{m}_{y}]_{x}^{(1)}}_{\left[\underline{y}_{0} - \underline{m}_{y}\right]_{x}^{(1)}} + \ln \frac{|\mathbf{K}_{y}^{(2)}|_{x}}{|\mathbf{K}_{y}^{(1)}|_{x}|} \right]$$
(3.12)

Eq. 3.10 suggests a distributed form for the decision rule which is described in the next section.

3. Distributed Decision Rule A

Fig. 3.1 shows that processor A uses vector \underline{x}_0 only and processor B uses vector \underline{y}_0 only. In this distributed decision rule the processor A which is to compute $\lambda_A(\underline{x}_0)$ has no problem because it observes vector \underline{x}_0 directly and it has all the other parameters needed in Eq. 3.11. Processor B, which is to compute $\lambda_{B}(\underline{y}_{0}|\underline{x}_{0})$, has a problem however because it does not have direct access to \underline{x}_{0} . This other observation vector appears in Eq. 3.8; thus Eq. 3.12 is dependent on \underline{x}_{0} .

If there exists a way to estimate the observation vector \underline{x}_0 using known parameters and sensor B's own observation vector \underline{y}_0 , then the estimated \underline{x} which we denote by $\hat{\underline{x}}_i$ can be used in Eq. 3.8 instead of \underline{x}_0 itself. This procedure is known as a generalized likelihood ratio test [Ref. 4]. In this case sensor B will have no problem in the computation since it is assumed that the other parameters necessary to compute $\underline{m}_{y|x}$ and $K_{y|x}$ are already known.

To obtain an estimate $\hat{\mathbf{x}}_i$, processor B considers the following conditional density:

$$p_{i}\left(\underline{x} \mid \underline{y}\right) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}_{x}^{(i)}|_{y}|^{\frac{1}{2}}}$$

$$\exp\left[-\frac{1}{2}\left[\underline{x} - \underline{m}_{x}^{(i)}\right]^{T} [\mathbf{K}_{x}^{(i)}]^{-1}\left[\underline{x} - \underline{m}_{x}^{(i)}\right]^{1}\right], \quad i = 1, 2$$
(3.13)

In particular processor B chooses <u>x</u> as the value that maximizes $p_i(\underline{x}|\underline{y})$. Because of its Gaussian form, Eq. 3.13 is maximized when $\underline{x} = \underline{m}_{\underline{x}|\underline{y}}$. From the symmetry of Eqs. 3.6 and 3.13 the following estimate is obtained(see Eq. 3.8).

$$\underline{\hat{x}}_{i} = \underline{m}_{x} {\binom{i}{y}} = \underline{m}_{x} {\binom{i}{y}} + \mathbf{B}_{xy} {\binom{i}{y}} [\mathbf{K}_{y} {\binom{i}{y}}]^{-1} [\underline{y}_{o} - \underline{m}_{y} {\binom{i}{y}}], \quad i = 1, 2 \quad (3.14)$$

Now processor B can use \underline{x} which is calculated by known parameters \underline{m}_{x} , $[B_{xy}]$, $[K_{y}]$, \underline{m}_{y} , and its own observation vector \underline{y}_{0} in Eq. 3.10 to implement a distributed decision algorithm. In this algorithm Eq. 3.10 is modified to the form:

$$\lambda_{A}(\underline{x}_{0}) + \lambda_{B}'(\underline{y}_{0}) \underset{\omega_{2}}{\overset{\omega_{1}}{\underset{\omega_{2}}{\overset{\gamma}{\ldots{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\underset{\omega_{2}}{\underset{\omega_{2}}{\underset{\omega_{2}}{\overset{\gamma}{\underset{\omega_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{\ldots_{2}}{\underset{1}{\atop_{2}}{\underset{1}{\atop_{2}{\atop_{2}}{\atop_{2}{\atop_{2}}{\atop_{2}}{\underset{1}{\atop_{2}}{\underset{1}{\atop_{2}}{\underset{1}{\atop_{1}{\atop_{1}{\atop_{1}{\atop_{1}{\atop_{1}{1}{\atop_{1}{\atop_{1}{\atop_{1}{1}{1}{\atop_{1}{1}{_{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1$$

where

$$\lambda_B (\underline{y}_0) = \lambda_B (\underline{y}_0 | \underline{\hat{x}}_i)$$
(3.16)

and where $\lambda_{B}(\underline{y}_{0}|\hat{\underline{x}}_{1})$ is given by Eq. 3.12 with \underline{x}_{0} replaced by $\hat{\underline{x}}_{1}$ of Eq. 3.14. Specifically $\hat{\underline{x}}_{1}$ will be used in the computation of $\underline{m}^{(1)}_{y|x}$ and $\hat{\underline{x}}_{2}$ will be used in the computation of $\underline{m}^{(2)}_{y|x}$ as these terms appear in Eq. 3.12. The term $\lambda_{A}(\underline{x}_{0})$ is exactly the same as in Eqs. 3.10 and 3.11.

Let us summarize the the results as follows. In this distributed decision rule A $\lambda_A(\underline{x}_0)$ is the same as was shown in the centralized decision rule of Eq. 3.10. However $\lambda'_B(\underline{y}_0)$ is different from $\lambda_B(\underline{y}_0|\underline{x}_0)$ in the centralized decision rule. Actually $\lambda'_B(\underline{y}_0)$ is simplified notation for the term $\lambda_B(\underline{y}_0|\underline{x}_1)$. Both $\lambda_A(\underline{x}_0)$ and $\lambda'_B(\underline{y}_0)$ are single statistics which must be added together and compared to the threshold value T to decide the class of the observed object. These statistics $\lambda_A(\underline{x}_0)$ and $\lambda'_B(\underline{y}_0)$ are displayed in Eq. 3.11 and 3.16.

29

Figure 3.3 Block Diagram of Distributed Decision Algorithms (a) Type A(D.D.A) (b) Type B(D.D.B)
The single statistic $\lambda'_{B}(\underline{y}_{0})$ which is calculated in processor B is transmitted to processor A through the limited bandwidth communication link. Processor A will then have both its own calculated statistic $\lambda_{A}(\underline{x}_{0})$ and the statistic $\lambda'_{B}(\underline{y}_{0})$ received from processor B. Therefore it can decide the class of observed object using Eq. 3.15. Eq. 3.15 is called distributed decision rule A because the class decision is made in processor A. This algorithm is illustrated in Fig. 3.3 (a).

4. Distributed Decision Rule B

Distributed decision rule A was considered in the previous section. A symmetric form of this algorithm is illustrated in Fig. 3.3(b). This algorithm uses a symmetric form of the conditional probability law of Eq. 3.3.

$$p_i\left(\underline{x},\underline{y}\right) = p_i\left(\underline{y}\right) p_i\left(\underline{x} \mid \underline{y}\right), \quad i = 1,2$$
(3.17)

which leads to:

$$\ln p_i(x,y) = \ln p_i(y) + \ln p_i(\underline{x} | \underline{y}), \quad i = 1,2$$
(3.18)

By analogy and symmetry with the equations used in distributed decision algorithm A, the following algorithm is derived

$$\lambda_B (\underline{y}_0) + \lambda_A' (\underline{x}_0) \sum_{\substack{\substack{> \\ \omega_2}}}^{\omega_1} \ln T$$
(3.19)

where

$$\lambda_{B}(\underline{y}_{0}) = \frac{1}{2} \left[\underline{y}_{0} - \underline{m}_{y}^{(2)} \right]^{T} [\mathbf{K}_{y}^{(2)}]^{-1} [\underline{y}_{0} - \underline{m}_{y}^{(2)}]$$

$$- [\underline{y}_{0} - \underline{m}_{y}^{(1)}]^{T} [\mathbf{K}_{y}^{(1)}]^{-1} [\underline{y}_{0} - \underline{m}_{y}^{(1)}] + \ln \frac{|\mathbf{K}_{y}^{(2)}|}{|\mathbf{K}_{y}^{(1)}|} \right]$$

$$(3.20)$$

$$\lambda_{A}(\underline{x}_{0}) = \frac{1}{2} \left[\frac{[\underline{x}_{0} - \underline{m}_{x}]_{y_{2}}^{(2)}}{[\underline{x}_{0} - \underline{m}_{x}]_{y_{2}}^{(2)}} \right]^{T} [\mathbf{K}_{x}]_{y}^{(2)} - \frac{[\underline{x}_{0} - \underline{m}_{x}]_{y_{2}}^{(2)}}{[\underline{x}_{0} - \underline{m}_{x}]_{y_{2}}^{(2)}} - \frac{[\underline{x}_{0} - \underline{m}_{x}]_{y_{1}}^{(1)}}{[\underline{x}_{0} - \underline{m}_{x}]_{y_{1}}^{(1)}} + \ln \frac{|\mathbf{K}_{x}]_{y}^{(2)}}{|\mathbf{K}_{x}]_{y}^{(1)}} \right]$$
(3.21)

where $K_{x|y}$ and $\underline{m}_{x|y}$ are computed from equations analogous to Eqs. 3.7 and 3.8. Processor B calculates the single statistic $\lambda_{B}(\underline{y}_{0})$ using its own observation vector \underline{y}_{0} . Processor A computes the single statistic $\lambda'_{A}(\underline{x}_{0})$ using the following estimate for the vector \underline{y} :

$$\hat{\underline{y}}_{i} = \underline{m}_{y} {\binom{i}{z}}_{|z} = \underline{m}_{y} {\binom{i}{z}} + \mathbf{B}_{zy} {\binom{i}{z}}^{T} [\mathbf{K}_{z} {\binom{i}{z}}]^{-1} [\underline{x} - \underline{m}_{z} {\binom{i}{z}}], \quad i = 1, 2 \quad (3.22)$$

Thus $\lambda'_A(\underline{x}_0)$ is a simplified notation for $\lambda_A(\underline{x}_0|\underline{\hat{y}_1})$ and is transmitted to processor B through the communication link. Therefore processor B computes $\lambda_B(\underline{y}_0)$ locally and receives $\lambda'_A(\underline{x}_0)$ from processor A. Then processor B makes a decision about the class of the observed object using Eq. 3.19. This procedure represents distributed decision rule B because the class decision is made by processor B.

C. COMPARISON WITH THE CENTRALIZED DECISION RULE

Three algorithms were introduced and explained in the previous sections A and B. Table 1 shows the differences among them very briefly. Notice that the two forms (Type A and Type B) given for the centralized decision rule are equivalent. In distributed decision algorithm A, processor B uses the estimated value \hat{x}_i instead of the observed value \hat{x}_o and sends the result $\lambda'_B(y_o)$ to processor A. In distributed decision algorithm B, processor A uses \hat{y}_i instead of \underline{y}_o and sends $\lambda'_A(\underline{x}_o)$ to B. These differences are visualized simply in Table 2.

Use of the estimates \hat{x}_i in distributed decision algorithm A, and \hat{y}_i in distributed decision algorithm B makes the results of these algorithms different from each other and different from the centralized decision rule. Further, the use of rules A and B together can result in an ambiguous situation where the two decisions are different. This can be resolved in a number of ways discussed later.

The key components which make the algorithms different from one another are the use of the estimate \hat{x}_i in distributed decision algorithm A, and \hat{y}_i in distributed decision algorithm B. If the estimated vectors \hat{x}_i and \hat{y}_i are close to the actual observation vectors x_o and y_o respectively then the results of the distributed algorithms A and B would be close to each other and close to the centralized algorithm. Although we have not been able to characterize theoretically the relative performance of these

algorithms we can show their results experimentally on a number of different test cases. These results are given in the next chapter.

RITHMS	TON VECTORS	e ESSOR	PROCESSOR B	\underline{y}_{o} and \underline{x}_{λ}	$\underline{\hat{x}}_{i} = \underline{m}_{x}^{(i)} + \mathbf{B}_{xy}^{(i)} \left[\mathbf{K}_{y}^{(i)}\right]^{-1} \left[\underline{y} - \underline{m}_{y}^{(i)}\right]$	PROCESSOR B		9
TABLE 2 DIFFERENT VECTORS IN ALGO	USING OBSERVAT	xo AND IN ONE PRC	PROCESSOR A	X	0	PROCESSOR A	\underline{x}_{o} and \widehat{Y}_{λ}	$\underline{\hat{y}}_{i} = \underline{m}_{y}^{(i)} + \mathbf{B}_{zy}^{(i)T} [\mathbf{K}_{z}^{(i)}]^{-1} [\underline{x} - \underline{m}_{z}^{(i)}]$
	ALGORITHM	<pre>1. CENTRALIZED DECISION ALGORITHM</pre>	2. DISTRIBUTED	DECISION	A	3. DISTRIBUTED	DECISION	ALGUKI I HIT

IV. SIMULATION

This chapter contains an evaluation and comparison of distributed decision rules A and B, and the centralized decision rule. The generation of random observation vectors and the calculation of their resulting statistics are discussed in sections A and B. In section C the results of the decision algorithms are compared to the results obtained from classification using a centralized algorithm.

A. RANDOM VECTOR GENERATION

The observation vectors \underline{x} and \underline{y} are generated by using a linear difference equation with white noise excitation. This difference equation can model, for example, the time series of radar cross section values that result when the target is observed by the sensors over a relatively short period of time. If W_1 and W_2 are independent white noise processes this difference equation has the form:

$$\begin{bmatrix} x'(I) \\ y'(I) \end{bmatrix} = A_{1} \begin{bmatrix} x'(I-1) \\ y'(I-1) \end{bmatrix} + A_{2} \begin{bmatrix} x'(I-2) \\ y'(I-2) \end{bmatrix} + \\ \dots + A_{p} \begin{bmatrix} x'(I-p) \\ y'(I-p) \end{bmatrix} + K_{w}^{\frac{1}{2}} \begin{bmatrix} w_{1}(I) \\ w_{2}(I) \end{bmatrix}$$
(4.1)

where

$$A_{i} = \begin{bmatrix} a_{x}^{(i)} & a_{xy}^{(i)} \\ a_{yx}^{(i)} & a_{y}^{(i)} \end{bmatrix}$$
(4.2)

This generates a pair of time series for x and y that are correlated and have zero mean. The measurements x and ythat represent the observations are then defined by:

$$\begin{bmatrix} x \begin{pmatrix} I \\ y \end{pmatrix} = \begin{bmatrix} x' (I) + m_x \\ y' (I) + m_y \end{bmatrix}$$
(4.3)

where m_x and m_y are the mean values of the observations. The observation vectors <u>x</u> and <u>y</u> then represent n samples of the time series. In this procedure it is assumed that $[A_i]$ and $[K_w]^{1/2}$ are given in advance and that white noise $W_1(I)$ and $W_2(I)$ have been previously generated and are available in a white noise data file.

The difference equation is implemented by a program with the title "GEN" [Appendix A]. If, for example, the observation vectors \underline{x} and \underline{y} have 32 time points each and a set of 128 independent vectors is needed then the program GEN generates two data sets. Each is an array of size 128 X 32 whose rows represent individual vectors \underline{x} and \underline{y} . These data are written to the disk with file names such as "X11", "X12", "Y11", and "Y12" to be used later in the decision test algorithm. In the file name X12 the first number "1" represents test case one, and second number 2 stands for class 2 data.

B. GENERATION OF STATISTICS OF RANDOM VECTORS

After the observation vectors in files X11, Y11, X12, and Y12 are generated, the joint statistics of these vectors are calculated. The statistics are used in the decision algorithms.

Let the dimension of the vectors be N and M and the number of vectors generated be L. Then mean, covariance, and cross covariance parameters are calculated using the following equations:

$$\underline{m}_{z} = \frac{1}{L} \sum_{k=1}^{L} \underline{x}^{(k)}$$
(4.4)

$$\underline{m}_{y} = \frac{1}{L} \sum_{k=1}^{L} \underline{y}^{(k)}$$
(4.5)

$$\mathbf{K}_{z} = \frac{1}{L} \sum_{k=1}^{L} \left(\underline{x}^{(k)} - \underline{m}_{z} \right) \left(\underline{x}^{(k)} - \underline{m}_{z} \right)^{T}$$
(4.6)

$$\mathbf{K}_{y} = \frac{1}{L} \sum_{k=1}^{L} \left(\underline{y}^{(k)} - \underline{m}_{y} \right) \left(\underline{y}^{(k)} - \underline{m}_{y} \right)^{T}$$
(4.7)

$$\mathbf{B}_{zy} = \frac{1}{L} \sum_{k=1}^{L} \left(\underline{x}^{(k)} - \underline{m}_{z} \right) \left(\underline{y}^{(k)} - \underline{m}_{y} \right)^{T}$$
(4.8)

Observe that two sets of each of the parameters in Eqs. 4.4 - 4.8 are required: one set for class 1 and one set for class 2. These calculations are performed by the program "STAT" [Appendix B] and the parameters are written to output files. From the file of vectors X11 the program STAT generates $m_x^{(1)}$, and $[K_x^{(1)}]$; from Y11 it produces $m_y^{(1)}$ and $[K_y^{(1)}]$; and from both X11 and Y11 it calculates $[B_{xy}^{(1)}]$. These represent the statistical parameters of the class 1 data. The files X12 and Y12 are used in a similar manner to produce $m_x^{(2)}$, $[K_x^{(2)}]$, $m_y^{(2)}$, $[K_y^{(2)}]$, and $[B_{xy}^{(2)}]$. These represent the statistical parameters of the class 2 data.

C. CLASSIFICATION PROGRAM

When observation vectors and their statistics are available, one can test the distributed classification algorithms and compare their results to the results of the centralized algorithm. A program "DECAL" [Appendix C] was written to implement these decision algorithms. This program has three main parts consisting of distributed decision rule A(denoted simply by "A"), distributed decision rule B(denoted simply by "B"), and the centralized decision rule(denoted simply by "C"). In this program every algorithm computes its own log likelihood ratio statistic to be compared to the threshold value. The statistics corresponding to each pair of observation vectors for each of the decision rules, A, B, and C are written to a disk file and used to compute the correct decision rates.

A Fortran program "ANAL" [Appendix D] generates the varying threshold values that are used with the data generated by DECAL to decide upon the classes of the observed objects. This organization of programs allows us to generate classification results for many threshold values without excessive computation. The threshold values are expressed in terms of the prior probabilities $p_r(\omega_1)$ and $p_r(\omega_2)$ which are chosen so that the condition of " $p_r(\omega_1)$ + $p_r(\omega_2)$ = 1.0" is satisfied.

D. CLASSIFICATION EXPERIMENTS

If a correct analysis is performed, one can fit an appropriate time series model to the sensor data to represent the observations made on two distinct types of targets such as those shown in Fig. 4.1.

Figure 4.1 Aircraft Type Detection and Observation Vectors

For the analysis here we are more interested in characterizing the distributed decision algorithm

performance for various second moment statistical properties of the observation vectors, such as mean, variance, and correlation. The cases chosen for analysis should not be interpreted to mean that we are attempting to model real target data.

For our experiments, we generated data according to Eqs. 4.1 through 4.3 with the order of the difference equation(p) equal to one. Four different cases were considered; their parameters are given in Table 3.

	TABI PARAMETERS IN DIF	LE 3 FERENCE EQUATIONS	
TEST CASE NO	class 1 [A ₁] [K _w] ^½	class 2 m [a ₁] [k _w] ^½	М
1	$ \begin{pmatrix} .5 & 0 \\ 0 & .4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix}5 & 0 \\ 0 &6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$
2	$\begin{pmatrix} .5 & 0 \\ 0 & .5 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & 1 \end{pmatrix} \begin{pmatrix} \end{array}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} .5 & 0 \\ 0 & .5 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & 1 \end{pmatrix}$	$\left(\begin{array}{c}1.5\\1.5\end{array}\right)$
3	$\begin{pmatrix} .5 & .2 \\ .2 & .4 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & 1 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 &$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix}5 & 0 \\ 0 &6 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & 1 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
4	$\begin{pmatrix} .6 & .2 \\ .3 & .5 \end{pmatrix} \begin{pmatrix} 1 & .2 \\ .2 & 1 \end{pmatrix} \begin{pmatrix} \\ \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} .5 & .1 \\ .1 & .4 \end{pmatrix} \begin{pmatrix} 1 & .1 \\ .1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$

Each test case used data from two different classes. In all but case 1 the filter coefficients $[A_1]$ and/or the covariance matrix $[K_w]^{1/2}$ resulted in observation vectors \underline{x} and \underline{y} that are correlated with each other. If the observation vectors \underline{x} and \underline{y} are uncorrelated, the conditional probability density function $p(\underline{y}|\underline{x})$ becomes the same as the unconditional density function $p(\underline{y})$. If this is true for both classes, as in case 1, then the three decision rules A, B, and C will be equivalent. Several specific cases are represented here. In cases 1 and 3, the class 2 filter has negative A₁ parameters; this makes the time series change very rapidly up and down. Since the data of class 1 does not have this property, we expect that the decision rules can discriminate between the two classes based on the correlation of the time series. In test case 2, class 2 has non-zero mean while class 1 has zero mean. Since the mean values are the only differences, the classification can only be based on these differences in the mean values. In test case 4 the mean values are also non-zero but both the class 1 mean and the class 2 mean are the same. In addition, the filter parameters for each class and the noise covariances are very similar. This makes the classification of the observations a relatively difficult problem.

	TAE	BLE 4		
	CORRECT DEC 4-DIMENSIONA	ISION L 128	RATE(%) VECTORS	
TEST CASE	CLASS	А	В	С
CASE #1	CLASS-1	85.9	. 85.9	85.2
	CLASS-2	84.4	85.2	82.8
CASE #2	CLASS-1	93.0	93.8	92.2
	CLASS-2	85.2	85.9	89.1
CASE ∦3	CLASS-1	81.3	83.6	85.2
	CLASS-2	85.9	86.7	85.9
CASE #4	CLASS-1	85.9	87.5	57.0
	CLASS-2	19.5	17.2	60.2

The results of classification for these test cases is shown in Tables 4 and 5. The results are based on a threshold corresponding to equal prior probabilities. The first test set was 4-dimensional (i.e. \underline{x} and \underline{y} each consisted of four time samples) and consisted of 128 pairs of observation vectors \underline{x} and \underline{y} . These results are given in Table 4. Most of the results show probabilities of correct classification in the range of about 85 to 90 percent. For test case 4 the probability of correct classification achieved by decision rules A and B is quite high for class 1 but very low for class 2. However, if the classifier threshold is adjusted by choosing different prior probabilities, the results are similar (but slightly worse) than the results for the centralized rule C. (The reader may refer to Appendix E.)

	TA CORRECT DEC 32-DIMENSION	BLE 5 SISION F AL 128	RATE(%) VECTORS	
TEST CASE	CLASS	А	В	С
CASE #1	CLASS-1	100.	100.	100.
	CLASS-2	100.	100.	100.
CASE #2	CLASS-1	100.	100.	100.
	CLASS-2	100.	100.	100.
CASE #3	CLASS-1	100.	100.	100.
	CLASS-2	99.2	99.2	93.8
CASE #4	CLASS-1	100.	100.	88.3
	CLASS-2	13.3	6.3	91.4

The second test set was 32-dimensional and again consisted of 128 observation vectors \underline{x} and \underline{y} . The results are given in Table 5. Note that in cases 1, 2, and 3 all vectors were classified correctly. That shows that the classes are easily separated by any of the decision rules if 32 time samples are used. In test case 4, the degraded performance is explained by the parameters in Table 3. Here both classes have similar correlation parameters, and both mean values are identical. This case was designed to be the most difficult.

By varying the prior probabilities one can change the threshold in the decision algorithms and therefore trade off the probability of correct classification of one class for incorrect classification of the other class. A graph of these probabilities is known "operating as an characteristic" for the decision rule. The results in Tables 4 and 5 represent a single point on each of the operating characteristics. Operating characteristics for cases 1,2,3, and 4 of Table 4 and case 4 of Table 5 are given in Figs. 4.2 through 4.5. The three different types of lines in the graph represent the results of the three different algorithms. These results are also given as tables in the Appendices. The correct decision rate is shown in the output data "GRAPH4" [Appendix E] for the 4-dimensional cases and "GRAPH32" [Appendix F] for the 32-dimensional cases.

It is interesting to note that in most cases the performance of the distributed decision rules compared favorably to that of the centralized decision rule. It is also interesing to note that the performance of decision rules A and B was always close together although the data in the test cases exhibited no symmetry in their defining parameters.

Figure 4.2 Operating Characteristics Graph of Test Case 1(4-Dimensional Vectors)

Figure 4.4 Operating Characteristics Graph of Test Case 3(4-Dimensional Vectors)

Figure 4.5 Operating Characteristics Graph of Test Case 4(4-Dimensional Vectors)

Figure 4.6 Operating Characteristics Graph of Test Case 4(32-Dimensional vectors)

V. CONCLUSIONS

The specific goals were all met in this thesis. The distributed decision rules were introduced and compared to the centralized decision rule. Since only one observation vector (either x or y) is available in each processor, the results of the distributed decision rule can not in general be the same as those of a centralized decision rule. The decision algorithms were explained mathematically and compared to one another. The difference between the algorithms arises from the fact that one sensor must estimate the observation vector of the other sensor using the locally measured observation vector and all available parameters. Simulation experiments for a number of cases with different statistical properties showed that when multiple observations are involved, the two distributed decision rules compare favorably to the centralized decision rule. Even when the vectors have high dimensionality, only a fixed limited amount of interprocessor communication is required.

In the two distributed decision rules, if each processor has a different class decision for the commonly observed object, an ambiguous situation results. In this case, one can either disregard that decision or use the following method. By comparing each log likelihood ratio statistic to the threshold value, one can select the decision which is further from the threshold value. This procedure is intuitively reasonable because decisions made when the statistic is close to the threshold value(observations in the region near the decision boundary) are more likely to be incorrect.

Further research may center on analytical characterization of these distributed decision rules and further analysis of the situation where the two rules A and B do not agree.

APPENDIX A

GEN FORTRAN

С	This program generates two sets of random observation
с	vectors i.e. Xll and Yll.
+	REAL*8 A(9,2,2),MX,MY,XP(32),YP(32),X(32), Y(32),KW(2,2),W1(32),W2(32)
	$\frac{1}{1}$
	M=32 P=1
	$\begin{array}{c} \text{READ}(2, \overset{*}{}) & \text{MX, MY} \\ \text{READ}(2, \overset{*}{}) & ((A(I, J, K), K=1, 2), J=1, 2), I=1, P) \\ \text{READ}(2, \overset{*}{}) & ((KW(I, J), J=1, 2), I=1, 2) \end{array}$
10	$\begin{array}{c} \text{READ}(3, \overset{*}{,} \text{END}=50) (W1(1), I=1, N) \\ \text{READ}(3, \overset{*}{,}) (W2(1), I=1, N) \end{array}$
	$ \begin{array}{c} XP(1) = KW(1,1) & *W1(1) + KW(1,2) & *W2(1) \\ YP(1) = KW(2,1) & *W1(1) + KW(2,2) & *W2(1) \end{array} $
	DO 30 $I=2$ N XP(1)=0. YP(1)=0.
	$I_{L=1}^{K-1}(I.GT.P) K=P$
	DO $\overline{20}^{-}J^{=1},K$ XP(I)=XP(I)+A(J,1,1)*XP(L)+A(J,1,2)*YP(L)
	YP(I) = YP(I) + A(J,2,1) * XP(L) + A(J,2,2) * YP(L)
20	$\begin{array}{c} \text{CONTINUE} \\ \text{VP}(T) = \text{VP}(T) + VW(1, 1) \times W(1, 2) \times W2(T) \\ \end{array}$
30	$\hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} $
	DO 40 I=1, N X(I)=XP(I)+MX
40	Y(I)=YP(I)+MY CONTINUE
41	WRITE $(7, 41)$ $(X(I), I=1, N)$ FORMAT $(1X, 4(2X, E15.8))$
42	WRITE $(8, 42)$ $(\hat{Y}(I), I = 1, M)$ FORMAT $(1\hat{X}, 4(2\hat{X}, E15.8))$
50	GO TO 10 STOP END

<u>APPENDIX</u> <u>B</u>

STAT FORTRAN

С	This program computes all the necessary
с	parameters of the given sets of vectors
с	i.e. Xll and Yll, or Xl2 and Yl2.
с	Matrix manipulation subroutines are
с	from the IMSL library [Ref. 5].
C	REAL*8 MX(32), MY(32), XP(32), YP(32), + X(32), Y(32), KW(32,32), + KX(32,32), KY(32,32), BXY(32,32), + XD(32,128), YD(32,128), + SKX(32,32), SKY(32,32), SBXY(32,32)
c	INTEGER I, J, K, L, M, N, IER
0	L=128 M=32 N=32
C	$\begin{array}{c} \text{READ}(2, \overset{*}{,} \text{END}=05) & ((\text{XD}(I, J), J=1, N), I=1, L) \\ \text{READ}(3, \overset{*}{,}) & ((\text{YD}(I, J), J=1, M), I=1, L) \end{array}$
с с	$\begin{array}{c} \text{WRITE}(8,*) ((\tilde{XD}(\tilde{1},\tilde{J}),\tilde{J}=\tilde{1},\tilde{N}),\tilde{1}=\tilde{1},\tilde{L}) \\ \text{WRITE}(9,*) ((YD(1,J),J=1,M),\tilde{1}=1,L) \end{array}$
05	$MX \{I\} = 0.$
С	DO 20 T = 1 N
10	$ \begin{array}{c} DO DO J=1, L \\ MX(I)=MX(I)+XD(J, I) \\ MY(I)=MY(I)+YD(J, I) \end{array} $
10	$\begin{array}{c} \text{MX}(\mathbf{I}) = 1 \cdot / \mathbf{L} \\ \text{MX}(\mathbf{I}) = 1 \cdot / \mathbf{L} \\ \text{MY}(\mathbf{I}) = 1 \cdot / \mathbf{L} \\ \end{array}$
20 C	CONTINUE
	DO 23 I=1,N DO 23 J=1,N SKX(I,J)=0. SKY(I,J)=0. SBXY(I,J)=0.
23	CONTINUE
25 c	READ(4, *, END=35) (X(I), I=1, N) READ(5, *) (Y(I), I=1, M) WRITE(6, *) (X(I), I=1, N)
c	$M_{TIE}(7,) (I(1), 1-1,)$
27	$\begin{array}{c} X(1) = X(1) - MX(1) \\ Y(1) = Y(1) - MX(1) \\ \end{array}$ CONTINUE
С	CALL VMULFP(X,X,N,1,N,N,N,KX,N,IER) CALL VMULFP(Y,Y,M,1,M,M,M,KY,M,IER) CALL VMULFP(X,Y,N,1,M,N,M,BXY,N,IER)

С	DO 30 I=1,N DO 30 J=1,N SKX(I,J)=SKX(I,J)+KX(I,J) SKY(I,J)=SKY(I,J)+KY(I,J)
30	CONTINUE
C	GO TO 25
35 ,	DO 40 I=1,N DO 40 J=1,N KX(T I)=1 (L*SKX(T I))
	$\hat{K}\hat{Y}$ \hat{I} \hat{J} \hat{J} \hat{I} \hat{I} \hat{J} J
40	CONTINUE
C 4.1	WRITE(7,41), (MX(I), I=1,N)
41 40	WRITE(7, 42) (MY(1), 1=1, M)
42	$\frac{\text{FORMAT}(1X, 4(2X, E15, 8))}{\text{WRITE}(7, 43)((KX(I, J), J=1, N), I=1, N)}$
43	FORMAT (1X,4(2X,E15.8)) WRITE(7,44)((KY(I,J),J=1,M),I=1,M)
44	FORMAT $(1X, 4(2X, E15, 8))$ WRITE $(7, 45)((BXY(T, I)) = 1, M)$ T=1, N)
45	FORMAT (1X,4(2X,E15.8))
C	STOP END

<u>APPENDIX</u> <u>C</u>

DECAL FORTRAN

С	This pro	ogram computes the final scalar values
с	of three	e different algorithms which will be
с	compared	with the threshold value.
с	Matrix m	nanipulation subroutines are from
с	the IMSI	library [Ref. 5].
C C*** C C	** ******** **	DECLARATIONS FOR DIST. RULE A ***********************************
СС	KEAL*0 + + +	PRW1, PRW2, T, VAL, DKX1, DKX2, DKY1, DKY2, DKYX1, DKYX2, MIM1, MIM2, C1, C2,
С	+ + + + +	X(32),MX1(32),MX2(32), Y(32),MY1(32),MY2(32), MK1(32),MK2(32), MB1(32),MB2(32), B1MY(32),B2MY(32),
c c	+ +	IMB1(32),IMB2(32),BIM1(32),BIM2(32), MBI1(32),MBI2(32),MIB1(32),MIB2(32),
c c	PEAL*8 ⁺	A1(32,32),B1(32),A2(32),B2(3
С	+ + + + + + + + + + +	WKAREA(1160), KX1(32,32), IKX1(32,32), KX1D(32,32), KX2(32,32), IKX2(32,32), KX2D(32,32), KY1(32,32), IKY1(32,32), KY1D(32,32), KY2(32,32), IKY2(32,32), KY2D(32,32), BXY1(32,32), BXY2(32,32), IKYX1(32,32), KYX1D(32,32), KYX1(32,32), IKYX1(32,32), KYX1D(32,32), KYX2(32,32), IKYX2(32,32), KYX2D(32,32), KYX2(32,32), IKYX2(32,32), KYX2D(32,32),
c c	REAL*8 + +	BB1X(32,32),BB2X(32,32), BX1Y(32,32),BX2Y(32,32), BY1(32,32),BY2(32,32),
С	+ + + +	BKB1(32,32), BKB2(32,32), IBY1(32,32), IBY2(32,32), BYI1(32,32), BYI2(32,32), BIB1(32,32), BIB2(32,32), BIB1(32,32), BIB2(32,32),
C C	INTEGER	I,J,L,M,N,

R, CLASS, NCLA1, NCLA2, NCLAS1, NCLAS2 DGT, IER , IDGT + LA NCL1 + **** С C******* * DECLARAT DIST B * *** **** ION <u>O</u>R F С BKX1(32,32),BKX2(32,32), BX1(32,32),BX2(32,32), KXY1(32,32),KXY2(32,32), KXY10(32,32),KXY2D(32,32), IKXY1(32,32),IKXY2(32,32), IBX1(32,32),IBX2(32,32), BX11(32,32),BX12(32,32), BIX1(32,32),BIX2(32,32), A3(32,32),A4(32,32), REAL*8 + + + + + ÷ + + С MIX1(32),MIX2(32), BIP1(32),BIP2(32), B1MX(32),B2MX(32), MKY1(32),MKY2(32), B3(32), B4(32), MBX1(32), MBX2(32) MB1X(32), MB2X(32) IXB1(32), IXB2(32) + ÷ + • + С REAL*8 DKXY1, DKXY2, MXM1, MXM2, C3, C4, SUM11, SUM12, SUM13, SUM14, SUM15, RY, RPX, VA + С INTEGER CLA С С C********** שר * DECLARATION FOR CENTRALIZED, * С С С REAL*8 A5(32,32),B5(32), XMX1(32),XMX2(32), MBT1(32),MBT2(32), MBK1(32),MBK2(32), BYT1(32), BYT2(32), KBT1(32), KBT2(32), + + + С MT1, MT2, RBY, C5, SUM24, SUM25, V + С INTEGER CL, COUNT С INITIALIZATION!!!! С С NCL1=0 NCL2=0 NCLA1=0 NCLA2=0 NCLAS1=0 NCLAS2=0 С L=0 M=32 N=32 IDGT=4 С PRW2=.5 PRW1=.5 T=DLOG(PRW1/PRW2) WRITE(7,*)'T=',T С С С С С **CINPUT PARAMETERS!!!!!** C READ(2,*)(MX1(I),I=1,N) WRITE(7,*)(MX1(I),I=1,N) READ(2,*)(MY1(I),I=1,M) WRITE(7,*)(MY1(I),I=1,N) READ(2,*)((KX1(I,J),J=1,N),I=1,N) WRITE(7,*)((KX1(I,J),J=1,M),I=1,N) READ(2,*)((KY1(I,J),J=1,M),I=1,M) WRITE(7,*)((KY1(I,J),J=1,M),I=1,M) READ(2,*)((BXY1(I,J),J=1,M),I=1,N) С С С С

c c	WRI	TE(7	,*)((BXY1(1	I, J), J=1, M), I=1, N)
c c	READ(WRI READ(3,*) TE(7 3,*)	(MX2(*)(M (MY2)	I),I=1 X2(I) I),I=1	1, N) , I = 1, N)
c c	WRI READ(WRI	TĖ(7 3,*) TĖ(7	((KX2 *)(()	Ŷ2(Ī), (I,J), KX2(I,	, i = 1, M) , J = 1, N), I = 1, N) , J , J = 1, N), I = 1, N)
c c	WRI READ(WRI	TĖ(7 3,*) TĖ(7	() (() ((BXY , *) (()	XÝ2(Í; 2(I,J) BXY2(1	, J , J = 1, M), I = 1, M)), J = 1, M), I = 1, N) L, J), J = 1, M), I = 1, N)
C C C C****	*****	** ***	***** DIST	***** RIBUTE	************ 2D_RULE_A***************
		**	****	*****	k de
C	DO 01 DC	I=1 01 KX1	,N J=1,N D(I,J)=KX1((Į,J)
01 c c	CONTI WRI WRI	NUE TE(7 TE(7	,*){(1,5) = KX2 (KX1D (] KX2D (]	[I, J], J=1, N], I=1, N] [J, J], J=1, N], I=1, N]
c	DO 02 DC	2 I=1 0 02 KY1	,M J=1,M D(T.J)=KY1((L.T)
02	CONTI	ŘŶŹ INUE	Ď(Ī,J)=ŘŶ2((Î,Ĵ)
cSUBR c	LOUTIN	IES!!	!!!!		
c c	CALL WF WF CALL	LINV LITE(LINV	2F (K 7,*)(7,*)(2F (K	X1,N,N (IKX1((KX1(J X2,N,N	N,IKX1,IDGT,WKAREA,IER) (İ,J),J=1,N),I=1,N) I,J),J=1,N),İ=1,N) N,IKX2,IDGT,WKAREA,IER)
c c	WF	RITE(7,*)((IKX2((1, J), J=1, N), I=1, N)
c c	CALL WF CALL WF	LINV RITE(LINV RITE(2F (K 7 *)(2F (K 7,*)(Y1,M,N (IŘY1) Y2,M,N (IŘY2)	<pre>1, IKY1, IDGT, WKAREA, IER) (I,J), J=1,M), I=1,M) 1, IKY2, IDGT, WKAREA, IER) (I,J), J=1,M), I=1,M)</pre>
c c	CALL WF CALL	DTER LTE(DTER	M (N, 7,*), M (N, 7 *),	KX1D,I DKX1= KX2D,I	DKX1,N) ,DKX1 DKX2,N) ,DKX2
c c	CALL WH CALL	DTER DTER DTER	M (M, 7,*) M (M,	KY1D,I DKY1= KY2D,I	, DKN2 DKY1,M) ', DKY1 DKY2,M)
C C	WE	VMUL	7,*)' FM (B	DKY2≐′ XY1,IŁ	', DKÝ2´ KX1, N, M, N, N, N, BB1X, M, IER)
c	UTICALL	TTF (7 *)((TKX1)	(T , I) , I=1 N) T=1 N
	WH WR WH WH	TTE (TTE (TTE (TTE (TTE (7;*{{ ;*){{ ;*){{ ;*){{ ;*)}{{	(İKYİ BXY1((BB1X) (BX1Y)	(I,J), J=I,M), I=I,M) (I,J), J=I,M), I=I,N) (I,J), J=I,N), I=I,M) (I,J), J=I,N), I=I,N)
С	CALL	VMUL	.FM (B	XY2.IH	KX2,N,M,N,N,N,BB2X,M,IER)

CALL VMULFF (BXY2, IKY2, N, M, M, N, M, BX2Y, N, IER)
WRITE(7,*)((IKX2(I,J),J=1,N),I=1,N) WRITE(7,*)((IKY2(I,J),J=1,M),I=1,M) WRITE(7,*)((BXY2(I,J),J=1,M),I=1,M) WRITE(7,*)((BB2X(I,J),J=1,N),I=1,M) WRITE(7,*)((BX2Y(I,J),J=1,M),I=1,N)
CALL VMULFF (BB1X, BXY1, M, N, M, M, N, BKB1, M, IER) CALL VMULFF (BB2X, BXY2, M, N, M, M, N, BKB2, M, IER)
WRITE(7,*)((BKB1(I,J),J=1,M),I=1,M) WRITE(7,*)((BKB2(I,J),J=1,M),I=1,M)
CALL VMULFF (BB1X, BX1Y, M, N, M, M, N, BY1, M, IER) CALL VMULFF (BB2X, BX2Y, M, N, M, M, N, BY2, M, IER)
WRITE(7,*)((BY1(I,J),J=1,M),I=1,M) WRITE(7,*)((BY2(I,J),J=1,M),I=1,M)
CALL VMULFF (BY1,MY1,M,M,1,M,M,B1MY,M,IER) CALL VMULFF (BY2,MY2,M,M,1,M,M,B2MY,M,IER)
WRITE(7,*)(B1MY(I),I=1,M) WRITE(7,*)(B2MY(I),I=1,M)
DO 10 I=1,M MB1(I)=MY1(I)-B1MY(I) MB2(I)=MY2(I)-B2MY(I) CONTINUE
WRITE(7,*)(MB1(I),I=1,M) WRITE(7,*)(MB2(I),I=1,M)
CALL VMULFF (MX1, IKX1, 1, N, N, 1, N, MK1, 1, IER) CALL VMULFF (MX2, IKX2, 1, N, N, 1, N, MK2, 1, IER)
$WRITE(7, *)(MK1(I), I=1, M) \\WRITE(7, *)(MK2(I), I=1, M)$
DO 20 I=1,M DO 20 J=1,M KYX1(I,J)=KY1(I,J)-BKB1(I,J) KYX2(I,J)=KY2(I,J)-BKB2(I,J)
$\begin{array}{c} & \texttt{KYX1D(I,J)=KYX1(I,J)} \\ & \texttt{KYX2D(I,J)=KYX2(I,J)} \\ & \texttt{CONTINUE} \end{array}$
$ \begin{array}{c} \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\left(\begin{array}{c} \text{KYX1} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{I=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{I=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{I=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{I=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX1} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{I=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(7, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{J=1}, \text{M} \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(\text{I}, \text{J} \right), \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KYX2} \left(1, \overset{*}{\star} \right), \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KY2} \left(1, \overset{*}{\star} \right), \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KY2} \left(1, \overset{*}{\star} \right), \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{KY2} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ \text{WRITE} \left(1, \overset{*}{\star} \right) \left(\begin{array}{c} \text{WRITE} \left(1, \overset{*}{\star} \right) \right) \\ WRITE$
CALL LINV2F (KYX1,M,M,IKYX1,IDGT,WKAREA,IER) CALL LINV2F (KYX2,M,M,IKYX2,IDGT,WKAREA,IER)
WRITE(7,*)((IKYX1(I,J),J=1,M),I=1,M) WRITE(7,*)((IKYX2(I,J),J=1,M),I=1,M)
CALL DTERM (M,KYX1D,DKYX1,M) CALL DTERM (M,KYX2D,DKYX2,M)
WRITE(7,*)'DKYX1=',DKYX1 WRITE(7,*)'DKYX2=',DKYX2
CALL VMULFF (IKYX1, BY1, M, M, M, M, M, IBY1, M, IER) CALL VMULFF (IKYX2, BY2, M, M, M, M, M, IBY2, M, IER)
$ \begin{array}{c} \text{WRITE}(7, \overset{*}{,}) \left(\left(\begin{array}{c} \text{IBY1}(1, J) \\ \text{IBY2}(1, J) \\ \text{J} = 1, M \right), \begin{array}{c} \text{J} = 1, M \\ \text{J} = 1, M \end{array} \right), \begin{array}{c} \text{J} = 1, M \\ \text{J} = 1, M \end{array} \right) \\ \end{array} $

0 0 0 0 c c c c с c c c c 0 0 0 0

-	CALL VMULFF (IKYX1,MB1,M,M,1,M,M,IMB1,M,IER) CALL VMULFF (IKYX2,MB2,M,M,1,M,M,IMB2,M,IER)
	WRITE(7,*)(IMB1(I),I=1,M) WRITE(7,*)(IMB2(I),I=1,M)
C	CALL VMULFM (BY1, IKYX1, M, M, M, M, M, BY11, M, IER) CALL VMULFM (BY2, IKYX2, M, M, M, M, M, BY12, M, IER)
с с с	$ \begin{array}{c} \text{WRITE}(7, \overset{*}{,}) \left(\left(\begin{array}{c} \text{BYI1}(1, J), J = 1, M \\ \text{WRITE}(7, \overset{*}{,}) \right) \left(\left(\begin{array}{c} \text{BYI2}(1, J), J = 1, M \\ \text{I}, J \right), J = 1, M \right), I = 1, M \end{array} \right) $
С	CALL VMULFF (BYI1, BY1, M, M, M, M, M, BIB1, M, IER) CALL VMULFF (BYI2, BY2, M, M, M, M, M, BIB2, M, IER)
C C C	WRITE(7, $*$)((BIB1(I,J),J=1,M),I=1,M) WRITE(7, $*$)((BIB2(I,J),J=1,M),I=1,M)
с	CALL VMULFF (BYI1, MB1, M, M, 1, M, M, BIM1, M, IER) CALL VMULFF (BYI2, MB2, M, M, 1, M, M, BIM2, M, IER)
CCC	$WRITE(7, *)(BIM1(I), I=1, M) \\WRITE(7, *)(BIM2(I), I=1, M)$
С	CALL VMULFM (MB1, IKYX1, M, 1, M, M, M, MBI1, 1, IER) CALL VMULFM (MB2, IKYX2, M, 1, M, M, M, MBI2, 1, IER)
	WRITE(7,*)(MBI1(I),I=1,M) WRITE(7,*)(MBI2(I),I=1,M)
C	CALL VMULFF (MBI1, BY1, 1, M, M, 1, M, MIB1, 1, IER) CALL VMULFF (MBI2, BY2, 1, M, M, 1, M, MIB2, 1, IER)
	WRITE(7,*)(MIB1(I),I=1,M) WRITE(7,*)(MIB2(I),I=1,M)
C	CALL VMULFF (MBI1,MB1,1,M,1,1,M,MIM1,1,IER) CALL VMULFF (MBI2,MB2,1,M,1,1,M,MIM2,1,IER)
0000	WRITE(7,*)'MIM1=',MIM1 WRITE(7,*)'MIM2=',MIM2
C	DO 30 I=1, N B1(I)=2. $*(MK1(I)-MK2(I))$
	A1(I, J)=IKX2(I, J)-IKX1(I, J) SUM3=SUM3+MX2(I)*IKX2(I, J)*MX2(J) + -MX1(I)*IKX1(I, J)*MX1(J)
30 c	CONTINUE
	WRITE(7, *)((A1(I,J), J=1,N), I=1,N)WRITE(7, *)(B1(I), I=1,N)
č,	C1 = SUM3 + DLOG(DKX2/DKX1) WRITE(7, $\overset{\circ}{\times}$)'C1 = '.C1
c	DO 40 I=1, M B2(I)=BIM2(I)+MIB2(I)-IMB2(I)-MBI2(I)
	+ $-(BIMI(I)+MIBI(I)-IMBI(I)-MBII(I))$ DO 40 J=1,M A2(I,J)=IKYX2(I,J)-IBY2(I,J)
	+ $-\overline{BYI2(1,J)}$ + $B\overline{IB2(1,J)}$ + $-(IKYX1(1,J)-IBY1(I,J)$ + $-BYI1(I,J)$ + $BIB1(I,J)$
40 C	CONTINUE C2=MIM2-MIM1+DLOG(DKYX2/DKYX1)
c	WRITE $(7, *)((A2(I,J), J=1, N), I=1, N)$

c c	WRITE(7,*)(B2(I),I=1,N) WRITE(7,*)C2=',C2
45 6	READ(4,*,END=299)(X(I),I=1,N) READ(5,*)(Y(I),I=1,M)
000	L=L+1WRITE(7, *) (X(I), I=1, N)WRITE(7, *) (Y(I), I=1, M)
	SUM1=0. SUM2=0. SUM3=0. SUM4=0. SUM5=0. SUM11=0. SUM12=0. SUM13=0. SUM14=0. SUM15=0. SUM15=0. SUM24=0.
C	DO 50 I=1,N SUM2=SUM2+B1(I)*X(I) DO 50 J=1,N
50 c	SUMI=SUMI+X(1)*AI(1,J)*X(J) CONTINUE RX=0.5*(SUM1+SUM2+C1)
c	DO 60 I=1,M SUM5=SUM5+B2(I)*Y(I) DO 60 J=1,M $SUM(-SUM(+Y(I))*A^{2}(I-I)*Y(I))$
60 c	CONTINUE RPY=0.5*(SUM4+SUM5+C2)
c c	VAL=RX+RPY
с	IF(VAL.GT.T) THEN CLASS=1 NCLAS1=NCLAS1+1 FLSE
	CLASS=2 NCLAS2=NCLAS2+1 END IF
C C C C****	**************************************
cSUBF c	ROUTINES!!!!!
с 100 с	CALL VMULFP (BX1Y, BXY1, N, M, N, N, N, BKX1, N, IER) CALL VMULFP (BX2Y, BXY2, N, M, N, N, N, BKX2, N, IER)
c	CALL VMULFF (BX1Y, BB1X, N, M, N, N, M, BX1, N, IER) CALL VMULFF (BX2Y, BB2X, N, M, N, N, M, BX2, N, IER)
c	CALL VMULFF (BX1,MX1,N,N,1,N,N,B1MX,N,IER) CALL VMULFF (BX2,MX2,N,N,1,N,N,B2MX,N,IER)

C	DO 110 I=1,N MB1X(I)=MX1(I)-B1MX(I) MB2Y(I)=MY2(I)-B2MY(I)
110 c	CONTINUE
с	CALL VMULFF (MY1, 1KY1, 1, M, M, 1, M, MKY1, 1, IER) CALL VMULFF (MY2, 1KY2, 1, M, M, 1, M, MKY2, 1, IER)
c	DO 120 I=1,N DO 120 J=1,N KXY1(I,J)=KX1(I,J)-BKX1(I,J) KXY2(I,J)=KX2(I,J)-BKX2(I,J) KXY1D(I,J)=KXY1(I,J)
120 c	KXY2D(I,J)=KXY2(I,J) CONTINUE
c c	CALL LINV2F (KXY1, N, N, IKXY1, IDGT, WKAREA, IER) CALL LINV2F (KXY2, N, N, IKXY2, IDGT, WKAREA, IER)
c	CALL DTERM (N,KXY1D,DKXY1,N) CALL DTERM (N,KXY2D,DKXY2,N)
č	CALL VMULFF (IKXY1, BX1, N, N, N, N, N, N, IBX1, N, IER) CALL VMULFF (IKXY2, BX2, N, N, N, N, N, IBX2, N, IER)
ĉ	CALL VMULFF (IKXY1, MB1X, N, N, 1, N, N, IXB1, N, IER) CALL VMULFF (IKXY2, MB2X, N, N, 1, N, N, IXB2, N, IER)
c	CALL VMULFM (BX1,IKXY1,N,N,N,N,N,N,BXI1,N,IER) CALL VMULFM (BX2,IKXY2,N,N,N,N,N,BXI2,N,IER)
c	CALL VMULFF (BXI1, BX1, N, N, N, N, N, N, BIX1, N, IER) CALL VMULFF (BXI2, BX2, N, N, N, N, N, BIX2, N, IER)
c	CALL VMULFF (BXI1, MB1X, N, N, 1, N, N, BIP1, N, IER) CALL VMULFF (BXI2, MB2X, N, N, 1, N, N, BIP2, N, IER)
c	CALL VMULFM (MB1X, IKXY1, N, 1, N, N, N, MBX1, 1, IER) CALL VMULFM (MB2X, IKXY2, N, 1, N, N, N, MBX2, 1, IER)
č	CALL VMULFF (MBX1, BX1, 1, N, N, 1, N, MIX1, 1, IER) CALL VMULFF (MBX2, BX2, 1, N, N, 1, N, MIX2, 1, IER)
č	CALL VMULFF (MBX1, MB1X, 1, N, 1, 1, N, MXM1, 1, IER) CALL VMULFF (MBX2, MB2X, 1, N, 1, 1, N, MXM2, 1, IER)
c	DO 130 I=1,M B4(I)=2.*(MKY1(I)-MKY2(I)) DO 130 J=1,M A4(I,J)=IKY2(I,J)-IKY1(I,J) SUM13=SUM13+MY2(I)*IKY2(I,J)*MY2(J)
130	CONTINUE C4=SUM13+DLOG(DKY2/DKY1)

```
140 I=1,N
B3(I)=BIP2(I)+MIX2(I)-IXB2(I)-MBX2(I)
-(BIP1(I)+MIX1(I)-IXB1(I)-MBX1(I))
D0 140 J=1,N
A3(I,J)=IKXY2(I,J)-IBX2(I,J)
-BXI2(I,J)+BIX2(I,J)
-(IKXY1(I,J)-IBX1(I,J)
-BXI1(I,J)+BIX1(I,J))
         DO
       +
       +
       +
        CONTINUE
C3=MXM2-MXM1+DLOG(DKXY2/DKXY1)
140
С
С
        D0 150 I=1,N
SUM12=SUM12+B3(I)*X(I)
D0 150 J=1,N
SUM11=SUM11+X(I)*A3(I,J)*X(J)
        CONTINUE
RPX=0.5*(SUM11+SUM12+C3)
150
С
С
        D0 160 I=1,M
SUM15=SUM15+B4(I)*Y(I)
D0 160 J=1,M
SUM14=SUM14+Y(I)*A4(I,J)*Y(J)
         CONTINUE
RY=0.5*(SUM14+SUM15+C4)
160
С
С
        VA=RPX+RY
С
С
         IF(VA.GT.T) THEN
CLA=1
                  NCLA1=NCLA1+1
         ELSE
                  CLA=2
NCLA2=NCLA2+1
         END IF
С
********
         DO 210 I=1,N

XMX1(I)=X(I)-MX1(I)

XMX2(I)=X(I)-MX2(I)

CONTINUE
210
С
С
         CALL VMULFF
CALL VMULFF
                               (BB1X,XMX1,M,N,1,M,N,BYT1,M,IER)
(BB2X,XMX2,M,N,1,M,N,BYT2,M,IER)
С
С
         DO 220 I=1,M
MBT1(I)=MY1(I)+BYT1(I)
MBT2(I)=MY2(I)+BYT2(I)
CONTINUE
220
С
С
         CALL VMULFF
CALL VMULFF
                               (IKYX1,MBT1,M,M,1,M,M,KBT1,M,IER)
(IKYX2,MBT2,M,M,1,M,M,KBT2,M,IER)
С
С
         CALL VMULFM
CALL VMULFM
                               (MBT1, IKYX1, M, 1, M, M, M, MBK1, 1, IER)
(MBT2, IKYX2, M, 1, M, M, M, MBK2, 1, IER)
С
         CALL VMULFF
CALL VMULFF
                               (MBK1,MBT1,1,M,1,1,M,MT1,1,IER)
(MBK2,MBT2,1,M,1,1,M,MT2,1,IER)
С
```

```
С
            D0 240 I=1,M
B5(I)=KBT1(I)+MBK1(I)-(KBT2(I)+MBK2(I))
D0 240 J=1,M
A5(I,J)=IKYX2(I,J)-IKYX1(I,J)
CONTINUE
C5=MT2-MT1+DLOG(DKYX2/DKYX1)
 240
 С
 С
            DO 260 I=1,M
SUM25=SUM25+B5(I)*Y(I)
DO 260 J=1,M
SUM24=SUM24+Y(I)*A5(I,J)*Y(J)
            CONTINUE
RBY=0.5*(SUM24+SUM25+C5)
 260
 С
 С
            V=RX+RBY
 c
c
            IF(V.GT.T) THEN
CL=1
                        NCLI=NCL1+1
            ELSE
                        CL=2
NCL2=NCL2+1
            END
                     IF
 С
            WRITE(7,*) VAL,VA,V
 С
 c WRITE(7,298) V, T, CLASS, CLA, CL
c298 FORMAT (2X,E15.8,3X,F5.3,2X,317)
 С
            GO TO 45
 С
RATEA1=100.*NCLAS1/L
RATEA2=100.*NCLAS2/L
RATEB1=100.*NCLA1/L
RATEB2=100.*NCLA2/L
RATEC1=100.*NCL1/L
RATEC2=100.*NCL2/L
            WRITE(7,*)
WRITE(7,*)
WRITE(7,*)
WRITE(7,*)
STOP
                                      L, NCLAS1, NCLA1, NCL1
RATEA1, RATEB1, RATEC1
L, NCLAS2, NCLA2, NCL2
RATEA2, RATEB2, RATEC2
             END
```

APPENDIX D ANAL FORTRAN

This program counts the number of correct decisions С of three algorithms and calculates the correct С decision rates of them С REAL*8 T, PRW1, PRW2, RATEA1, RATEA2, RATEB1, RATEB2, RATEC1, RATEC2, VAL(128), VA(128), V(128) +С С I, J, L, CLASS, CLA, CL, NCLASI, NCLAI, NCLI NCLAS2, NCLA2, NCL2 INTEGER + + + С С L=128 С С DO 10 I=1,L READ (2,*) VAL(I),VA(I),V(I) CONTINUE 10 С С PRW1=0.005 PRW2=1.-PRW1 20 С T=DLOG(PRW2/PRW1) С NCLAS1=0 NCLAS2=0 NCLA1=0 NCLA2=0 NCL1=0 NCL2=0 С С I=1,L (VAL(I).GT.T) THEN CLASS=1 30 IF DO NCLAS1=NCLAS1+1 ELSE CLASS=2 NCLAS2=NCLAS2+1 END IF С С IF (VA(I).GT.T) THEN CLA=1 NCLA1=NCLA1+1 ELSE CLA=2 NCLA2=NCLA2+1 END IF С С IF (V(I).GT.T) THEN CL=1

```
NCL1=NCL1+1
ELSE
          CL=2
NCL2=NCL2+1
END IF
      CONTINUE
      RATEA1=100.*NCLAS1/L
RATEA2=100.*NCLAS2/L
      RATEB1=100.*NCLA1/L
RATEB2=100.*NCLA2/L
      RATEC1=100.*NCL1/L
RATEC2=100.*NCL2/L
      WRITE (7,*) CLASS, CLA, CL
      WRITE (7,*) PRW1, PRW2, T, L
      WRITE (7,*) NCLAS1, NCLA1, NCL1
      WRITE (7,*) RATEA1, RATEB1, RATEC1
      WRITE (7,*) NCLAS2, NCLA2, NCL2
      WRITE (7,*) RATEA2, RATEB2, RATEC2
      PRW1=PRW1+0.005
      IF (PRW1.GE.1.0) GO TO 299
      GO TO 20
c
299
      STOP
END
```

с 30 с

С

С

00000000

000000

С С

С

APPENDIX E GRAPH4 DATA

These data files show the correct decision rates of 4 dimensional observation vectors. The first data is ANAL11 which represents case 1 and class 1 results. The capital letters "A" and "B" represent distributed decision rules A and B, and "C" means the centralized decision rule.

The varying prior probability Pr(wl) is given in the first column.
	N co dec	O. of rrect ision	IS	de	correct ecision ates(%)	
Pr(wl)	А	В	С	А	В	С
0.050 0.100 0.200 0.250 0.350 0.350 0.400 0.450 0.450 0.450 0.550 1 0.650 1 0.650 1 0.750 1 0.750 1 0.750 1 0.750 1 0.8800 1 0.8850 1 0.950	5220771885995000359022345	524 7752 999900 1111221355 1111221355	52 632 79 89 900 1009 112 1146 119 1221 1224 1226	40.625 448.686 663.7519 663.7219 668.777.0938 885.93814 9935.98469 9956.88 8892.37513 9956.86 9956.86 997.9956 997.9956	40.625 504.6894 554.0963 74.219 76.5631 885.963 74.25631 885.9388 899.89650 9946.656 997.6556	$\begin{array}{c} 40.625\\ 49.219\\ 561.719\\ 64.841\\ 78.1250\\ 857.5063\\ 992.5960\\ 992.597\\ 992.599\\ 994.097\\ 98.43\\ 992.599\\ 998.43\\ 998.42$

ANAL12

NO. of correct

	c de	orrec cisio	t ns		decision rates(%)	
Pr(wl)	А	В	С	А	В	С
0.050 0.100 0.200 0.250 0.350 0.350 0.450 0.550 0.550 0.600 0.650 0.750 0.850 0.850 0.850 0.950	$\begin{array}{c} 1276\\ 12224\\ 12224\\ 1116638506\\ 99877057\\ 57\end{array}$	127654227651221116529506913722376576576576576576576576576576577237657657657657657657657657657657657657657	12224430 12222211111003093588061	$\begin{array}{c} 99.219\\ 98.456\\ 97875\\ 94.506\\ 94.506\\ 90625\\ 900.6281\\ 900.84.0325\\ 884.0120\\ 71.096\\ 884.0096\\ 884.0096\\ 884.0096\\ 75.0096\\ 71.0096\\ 654.78\\ 50.168\\ 50.1$	99.219 97.675 97.675 97.405 97.405 99.506 99.555 99.555 99.555 099.555 099.555 099.400 882.00944 606.259 442.550 444.550 5509444 55094444 55094444 55094444 55094444 55094444 55094444	99.26759 97.68759 997.88759 997.88759 997.68759 997.68759 997.68759 997.687119 88990.8420 136508 880.772608 136508 88036 7726049 136555 1365555 136555555 136555555555555555555555555555555555555

correct decision rates(%) NO. of correct decisions Pr(w1) Α В С A В С $\begin{array}{c} .0500\\ .1000\\ .2000\\ .2500\\ .3500\\ .4500\\ .5500\\ .5500\\ .6500\\ .7500\\ .88500\\ .88500\\ .950\\ .950\end{array}$ 86489900 11035799113445567 88049924440122002233344477 821 92271 1071 11136889 10271 11136889 10271 1111 11111 1112 112233 457778 1231992849950886642 $\begin{array}{c} .750\\ .1250\\ .1250\\ .500\\ .0063\\ .750\\ .750\\ .750\\ .750\\ .0994\\ .0944\\ .0975\\ .219\\ .219\\ .219\end{array}$ 006577726119500862200 00891019500862200 6788888899999999999999999 671936688022224666679990 9999999999999910 7145558912246667789 688888888999999999999999

ANAL21

ANAL2 2

	c de	NO. o orrec cisio	f t ns	correct decision rates(%)		
Pr(wl)	А	В	С	А	В	С
0.050 0.150 0.250 0.250 0.350 0.400 0.450 0.550 0.650 0.750 0.750 0.750 0.800 0.950 0.950	126 1222 118 115 115 1129 107 1022 107 1022 107 879	$\begin{array}{c} 126\\ 1221\\ 117\\ 117\\ 117\\ 1109\\ 1008\\ 931\\ 003\\ 003\\ 003\\ 003\\ 003\\ 003\\ 003\\ 0$	12230 12220 11175440 100441 100441 9830 870	986. 99999 9952 9920 99999 99999 88755 11599 888 8888 888 888 888 778 785 7755 888 777 755 888 777 775 66 7755 7755	995421 995421 995421 995421 995421 999999 99888555 99999 9988855544 9999 99888855544 9999 9988885554 9999 998888888888888 9999 9999 9999 99888 8885555999 9990 9990 9990 9990 9990 9990 9990 9990 9990 9900 9900 9900 9900 9900 9900 9900 9900 9900 9900 9900 9900 9900 90000 9000 9000 9000 90000 9000 9000 9000	100.00098.090993.750991.4066899.063889.063889.063889.063889.063889.063889.055083.250678.0094881.250675.09454.688

	c de	NO. o orrec cisio	f t ns	C 1	correct decision rates(%)			
Pr(wl)	А	В	С	А	В	С		
0.050 0.100 0.1200 0.2250 0.350 0.350 0.4500 0.4500 0.5500 0.6500 0.6500 0.7500 0.8500 0.8500 0.8500 0.950	58947346394924780246	547463674279346670111467011122246	59867759 9006925670 1009256700 11200246	45.313 53.813 57.8156 64.825 64.825 672.688 72.6340 85.1560 87.5063 912.4083 912.480 923.753 98.438	42.188 579.874 677.93.126 6677.93.126 669561 7793.126620 6695151 8899.126256 620501 75375 8899.13.5751 8999.13.5751 8999.1551 89999.1551	46.094 59.3156 66.4319 78.2223 80.45319 782.2236 801.58426 801.750 8857.8425 889.44550 993.3758 993.3758 996.4450 993.3758 998.4456 999.4456 999.4456 999.4456 999.4456 999.4456 999.4456 999.4456 999.4456 999.4557 999.4456 999.4557 999.4456 999.4557 999.4456 999.4557 999.4456 999.4557 999.4456 999.4557 999.4456 999.4557 999.44556 999.4557 999.5577 999.5577 999.5577 999.5577 999.5577 999.55777 999.557777777777		

	c de	NO. o orrec cisio	f t ns		correct decision rates(%)	
Pr(wl)	А	В	С	А	В	С
$\begin{array}{c} 0.050\\ 0.100\\ 0.200\\ 0.250\\ 0.300\\ 0.350\\ 0.400\\ 0.450\\ 0.550\\ 0.650\\ 0.650\\ 0.750\\ 0.650\\ 0.750\\ 0.800\\ 0.850\\ 0.900\\ 0.950\\ \end{array}$	126 1224 1220 11221 115 115 1039 970 8849 717 57	$1254207\\12207\\1115413109909\\880\\8656$	12254407 122220764440318382568 7658	98.438 97.68753 996.37506 995.7405 999.8939 999.893644 880.75.3750 885.4448 88775.3750 708.6119 708.6119 6651.431 6651.431	98.438 97.813 97.813 95.3750 991.6243 990.84639 990.74600 899.74600 880.71696 709.3338 880.3338 75.5880 622.520 623.750	99.219 97.88750 96.8750 93.4205 99.06038 99.099 99.09366 99.0936

	c de	NO. o orrec cisio	f t ns		correct decision rates(%)	
Pr(wl)	А	В	С	А	В	С
0.050 0.150 0.200 0.250 0.350 0.400 0.4500 0.5500 0.650 0.7500 0.7500 0.7500 0.8500 0.7500 0.8500 0.900 0.900 0.900	39610350903788888888888888888888888888888888888	484344510237888888888888888888888888888888888888	12394248136985688888 1234678012222222 11122222222	$\begin{array}{c} 2.344\\ 7.031\\ 12.500\\ 16.406\\ 23.438\\ 33.594\\ 42.969\\ 54.688\\ 69.531\\ 85.938\\ 96.094\\ 99.219\\ 100.000\\ 0$	3.125 10.938 17.969 26.563 342.969 70.3100 970.3100 970.2000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000	$\begin{array}{c} 0.781\\ 1.563\\ 2.344\\ 7.031\\ 10.938\\ 17.188\\ 26.560\\ 47.6561\\ 57.6318\\ 85.1566\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.1886\\ 92.000\\ 100.000\\$

ANAL42

	c de	NU. o orrec cisio	r t ns		decision rates(%)			
Pr(wl)	А	В	С	А	В	С		
0.050 0.100 0.200 0.250 0.350 0.450 0.450 0.550 0.650 0.650 0.750 0.850 0.850 0.850 0.900 0.950	12875224969995031000000000000000000000000000000000	$128 \\ 1225 \\ 1221 \\ 1095 \\ 787 \\ 221 \\ 300 \\ 0$	122888752248872933304311 122219772933304311	100.00099.21997.65695.31389.06385.15675.00061.71938.28119.53132.38440.7810.0000.0000.0000.0000.0000.000	$\begin{array}{c} 100.000\\ 97.656\\ 97.656\\ 95.313\\ 90.625\\ 82.219\\ 60.938\\ 36.718\\ 8.594\\ 17.188\\ 36.344\\ 0.000$	$100.000\\100.000\\100.000\\99.219\\97.656\\95.313\\89.063\\76.566\\430.4369\\17.969\\10.156\\7.813\\3.125\\2.344\\0.781\\0.781$		

APPENDIX F GRAPH32 DATA

These data files show the correct decision rates for 32 dimensional observation vectors. The first data is ANAL11 which represents case 1 and class 1 results. The capital letters "A" and "B" represent distributed decision rules A and B, and "C" means the centralized decision rule. The varying prior probability Pr(w1) is given in

the first column.

	c de	NO. o orrec cisio	f t ns		correct decision rates(%)	
Pr(w1)	А	В	С	А	В	С
0.050 0.100 0.1200 0.2250 0.350 0.350 0.4500 0.4500 0.4500 0.5500 0.6500 0.6500 0.7500 0.8850 0.8850 0.950	$\begin{array}{c} 128\\ 1228\\ 12288\\ 122888\\ 12288888\\ 122828888888888$	$\begin{array}{c} 128\\ 128\\ 1228\\ 1$	$\begin{array}{c} 128\\ 128\\ 1228\\ 1$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$

ANAL12

	c de	NO. o orrec cisio	f t ns		correct decision rates(%)			
Pr(wl)	А	В	С	А	В	С		
0.050 0.150 0.250 0.250 0.350 0.400 0.450 0.450 0.550 0.600 0.650 0.650 0.750 0.850 0.850 0.850 0.950	$\begin{array}{c} 128\\ 1228\\ $	$\begin{array}{c} 128\\ 1228\\ $	$\begin{array}{c} 128\\ 1228\\ $	$100.000\\100.$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$		

C	0.7		<u> </u>	÷
	01	- ± '	ç u	5
de	CJ	S	10	n
ra	te	24	(%)

	c de	NO. o orrec cisio	f t ns		correct decision rates(%)	
Pr(wl)	А	В	С	А	В	С
0.050 0.150 0.250 0.250 0.350 0.400 0.450 0.550 0.550 0.650 0.650 0.700 0.8850 0.950 0.950	128 1228 1228 1228 1228 1228 1228 1228	128 1288 1228 1228 1228 1228 1228 1228	128 128 128 128 128 128 128 128 128 128	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$

			A N	A L 2 2		
	c de	NO. o orrec cisio	f t ns		correct decision rates(%)	
Pr(w1) 0.100 0.150 0.250 0.250 0.250 0.350 0.350 0.450 0.450 0.550 0.450 0.650 0	A 1288 1288 1288 1288 1288 1288 1288 128	B B B B C C C C C C C C C C C C C C C C	C 1228 1228 1228 1228 1228 1228 1228 122	$\begin{array}{c} & A \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 0.000$	$\begin{array}{c} B\\ 100.000\\ 10$	$\begin{array}{c} C\\ 100.000\\ 10$

NO. of correct decisions					correct decision rates(%)			
Pr(wl)	А	В	С	А	В	С		
0.050 0.100 0.2250 0.300 0.350 0.450 0.5500 0.5500 0.6500 0.750 0.800 0.8500 0.950 0.950	$\begin{array}{c} 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\$	$\begin{array}{c} 128\\ 1228\\ 1228\\ 12288\\ 122888\\ 1228888\\ 1228888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 122888888\\ 1228888888\\ 1228888888\\ 1228888888\\ 1228888888\\ 1228888888\\ 1228888888\\ 12288888888\\ 1228888888\\ 1228888888\\ 12288888888\\ 12288888888\\ 12288888888\\ 12288888888\\ 122888888888\\ 122888888888\\ 1228888888888$	$\begin{array}{c} 128\\ 1228\\ 12288\\ 12228\\ 12228\\ 122888\\ 122888\\ 122888\\ 122888\\ 12288\\ 12288\\ 12288\\ 12288\\ 12288\\ 12288\\ 12288\\ 12288\\ 1$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$	$\begin{array}{c} 100.000\\ 100.0$		

ANAL32

٠

	c de	NO. o orrec cisio	f t ns	correct decision . rates(%)			
Pr(wl)	А	В	С	А	В	С	
0.050 0.150 0.200 0.250 0.350 0.400 0.450 0.550 0.600 0.650 0.750 0.750 0.850 0.850 0.850 0.900 0.950	$\begin{array}{c} 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\$	$\begin{array}{c} 128\\ 1288\\ 1228\\ 1228\\ 1228\\ 1228\\ 1228\\ 1227\\ $	$\begin{array}{c} 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\ 128\\$	$100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.219 \\ 99.219 \\ $	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219 99.219	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750 93.750	

	de	NU. correc ecisio	of ct ons	correct decision rates(%)			
Pr(wl)	A	В	С	А	- 40005 (78) B	C	
0.050 0.100 0.200 0.250 0.350 0.400 0.400 0.550 0.650 0.650 0.750 0.750 0.800 0.950 0.950	$\begin{array}{c} 103\\ 125\\ 125\\ 125\\ 1225\\ 1227\\ 1228\\ 122$	$\begin{array}{c} 108\\ 11234\\ 1226\\ 1226\\ 1226\\ 1228\\$	$\begin{array}{c} 69\\ 837\\ 996\\ 1006\\ 1113\\ 1122\\ 1224\\ 1227\\ 122$	80.469 90.625 94.531 97.656 97.656 97.656 99.219 99.219 99.219 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000	$\begin{array}{c} 84.375\\92.969\\96.094\\96.875\\98.438\\98.438\\98.438\\98.438\\98.438\\100.000\\$	53.9064 971.8965 71.8006 71.8006 75.9913 758.98175 782.3719 888.22666 888.2466 888.1751 888.2666 991.4000 995.8756 995.219 999 999	

	de	NO. d orred cisid	of ct ons		correct decision rates(%)			
Pr(wl)	A	В	С	А	B	C		
0.050 0.100 0.200 0.250 0.350 0.400 0.450 0.5500 0.650 0.650 0.750 0.800 0.850 0.950 0.950	101735669517275432100	7960336118877331000	$\begin{array}{c} 127\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\$	$\begin{array}{c} 78.906\\ 60.156\\ 49.219\\ 42.938\\ 28.125\\ 22.631\\ 16.481\\ 9.375\\ 22.531\\ 16.481\\ 9.375\\ 3.906\\ 3.906\\ 3.906\\ 3.125\\ 463\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	67.969 53.906 43.750 39.063 39.063 25.781 20.313 16.494 6.250 5.469 2.344 0.781 0.000 0.000 0.000	99.26755 99.26754 997.88913 997.896.0313 995.33131 995.33300 995.33300 995.33300 995.33300 995.5000 997.5000 887.5000 887.5000 887.5000 887.5000 887.5000 887.5000 887.5000 887.5000 887.5000 872.469 872.469 875.469 8		

LIST OF REFERENCES

- 1. Schon, M. A., <u>Development of a Testbed for Multisensor</u> <u>Distributed Decision Algorithms</u>, M.S. Thesis, Naval <u>Postgraduate School</u>, <u>Monterey</u>, California, December 1985.
- 2. Helstrom, C. W., Probability and Stochastic Processes for Engineers, Macmillan Publishing Company, New York 1982.
- 3. Klinefelter, S.G., <u>Implementation of a Real-Time</u>, <u>Distributed Operating</u> <u>System for a Multiple Computer</u> <u>System</u>, M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1982.
- 4. Van Trees, H.L., <u>Detection Estimation and Modulation</u> <u>Theory</u>, Part I, John Wiley & Sons, New York, 1968.
- 5. International Mathematical & Statistical Libraries, Inc., <u>IMSL</u> Library, IMSL, Inc., November 1984.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5100		2
2.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
3.	Department Chairman, code 62 Dept. of Electrical and Computer Engineeri Naval Postgraduate School Monterey, California 93943-5100	ng	1
4.	Prof. Charles W. Therrien, Code 62 Ti Dept. of Electrical and Computer Engineeri Naval Postgraduate School Monterey, California 93943-5100	ng	3
5.	Prof. Uno R. Kodres, Code 52 Kr Dept. of Computer Science Naval Postgraduate School Monterey, California 93943-5100		2
6.	Prof. M. L. Cotton, Code 62 Cc Dept. of Electrical and Computer Science Naval Postgraduate School Monterey, California 93943-5100		1
7.	Prof. R. Panholzer, Code 62 Pz Dept. of Electrical and Computer Science Naval Postgraduate School Monterey, California 93943-5100		1
8.	Maj. Sung-Chu Hahn PO #17 Daebang-dong Dongjakgu Seoul 151-01 Republic of Korea		7
9.	Capt. Mark A. Schon 1801 Artillery Ridge Road Fredericksburg, Virginia 22401		1
10.	Professor P. Moose, Code 62 Me Dept. of Electrical and Computer Engineeri Naval Postgraduate School Monterey, California 93943-5100	ng	1
11.	Mr. D. Cowan NWC China Lake, Code 31507 China Lake, California 93555		1
12.	Dr. P. Krueger Air 320H Naval Air Systems Command Washington, D. C. 20361		1

72-197

.

